RESUMO
Brassware industry constitutes the second most polluting industrial sector in Fez city, Morocco, owing to its high heavy metal load. The aim of this study is to examine and evaluate the performance of vertical flow constructed wetlands in treating brassware effluents using various plant species. Ten treatment systems were planted with four types of plants: Chrysopogon zizanioides, Typha latifolia, Phragmites australis, and Vitex agnus-castus, while another system remained unplanted. These systems underwent evaluation by measuring various parameters, including pH, electrical conductivity, suspended solids, chemical oxygen demand, biological oxygen demand, sulfates, orthophosphates, total Kjeldhal nitrogen, ammonium, nitrates, nitrites, and heavy metals such as silver, copper, and nickel, using standard methods over of ten weeks. The results obtained demonstrate effectiveness of these systems. When planted with Ch. zizanioides, the systems achieved elimination rates of 83.64%, 98.55%, 91.48%, 86.82%, 80.31%, 96.54%, 98%, and 98.82% for suspended solids, ammonium, nitrites, BOD5, sulfates, orthophosphates, silver, and nickel, respectively. System with V. agnus-castus showed significant reductions in nitrate and copper, with rates of 84.48% and 99.10%, respectively. Considerable decrease in pH and electrical conductivity values was observed in all systems, with a notable difference between planted and control systems regarding effectiveness of treatment for other parameters.
The novelty of this study lies in the application of constructed wetlands for the treatment of brassware effluents in the city of Fez, Morocco. Consequently, a comparison was conducted to assess the removal efficiency of Chrysopogon zizanioides (L.) Roberty and Vitex agnus-castus L., in comparison to Typha latifolia L. and Phragmites australis (Cav.) Trin. These four plant species were specifically chosen for their high elimination capacity and resistance to the toxicity of the pollutants. Notably, this study represents an unexplored aspect in the existing literature. Nevertheless, T. latifolia and P. australis have been extensively utilized in constructed wetlands for treating diverse wastewaters. The findings from this study can also be extrapolated to pilot-scale constructed wetlands, offering valuable insights for the removal of pollutants from brassware wastewater.
Assuntos
Biodegradação Ambiental , Metais Pesados , Eliminação de Resíduos Líquidos , Áreas Alagadas , Marrocos , Eliminação de Resíduos Líquidos/métodos , Metais Pesados/metabolismo , Poluentes Químicos da Água/metabolismo , Resíduos Industriais , Análise da Demanda Biológica de Oxigênio , Águas ResiduáriasRESUMO
Water resources, particularly rivers, are increasingly exposed to pollutants, especially heavy metals of chemical origin, which are difficult to monitor and can pose risks to both ecosystems and human health. This study assesses heavy metal contamination in the Oued Fez River, focusing on the bioaccumulation by the invasive plant Pistia stratiotes. The methodology involves measuring and comparing metal concentrations in water and plant tissues. Results revealed that while aluminium (Al) slightly exceeded recommended levels at 0.2978 mg L-1, other metals like zinc (Zn), iron (Fe), copper (Cu), lead (Pb) and cadmium (Cd) remained within acceptable limits. The study demonstrates P. stratiotes' effectiveness in heavy metal phytoremediation, with its roots showing high bioaccumulation up to 19,726 mg kg-1 for Fe and 15,128 mg kg-1 for Al, indicating its potential for water decontamination. Eco-toxicological assessments, including bioconcentration and translocation factors, confirm the plant's capacity to mobilize toxic metals. Statistical analysis also points to possible industrial, urban, or agricultural contamination sources based on correlations between Al, Fe and Zn. The study underscores P. stratiotes' role in phytoremediation while emphasizing the need for monitoring and controlling contamination sources and managing the spread of this invasive species to ensure sustainable water resources.
Assuntos
Araceae , Biodegradação Ambiental , Monitoramento Ambiental , Metais Pesados , Rios , Poluentes Químicos da Água , Metais Pesados/metabolismo , Metais Pesados/análise , Poluentes Químicos da Água/metabolismo , Poluentes Químicos da Água/análise , Araceae/metabolismo , Rios/química , BioacumulaçãoRESUMO
The present study is based on a multidisciplinary approach carried out for the first time on Anacyclus pyrethrum var. pyrethrum and Anacyclus pyrethrum var. depressus, two varieties from the endemic and endangered medicinal species listed in the IUCN red list, Anacyclus pyrethrum (L.) Link. Therefore, morphological, phytochemical, and genetic characterisations were carried out in the present work. Morphological characterisation was established based on 23 qualitative and quantitative characters describing the vegetative and floral parts. The phytochemical compounds were determined by UHPLC. Genetic characterisation of extracted DNA was subjected to PCR using two sets of universal primers, rbcL a-f/rbcL a-R and rpocL1-2/rpocL1-4, followed by sequencing analysis using the Sanger method. The results revealed a significant difference between the two varieties studied. Furthermore, phytochemical analysis of the studied extracts revealed a quantitative and qualitative variation in the chemical profile, as well as the presence of interesting compounds, including new compounds that have never been reported in A. pyrethrum. The phylogenetic analysis of the DNA sequences indicated a similarity percentage of 91%. Based on the morphological characterisation and congruence with the phytochemical characterisation and molecular data, we can confirm that A. pyrethrum var. pyrethrum and A. pyrethrum var. depressus represent two different taxa.
Assuntos
Asteraceae , Chrysanthemum cinerariifolium , Chrysanthemum cinerariifolium/genética , Filogenia , Extratos Vegetais/química , Asteraceae/química , Compostos FitoquímicosRESUMO
The study of bioactive molecules of natural origin is a focus of current research. Thymus algeriensis and Artemisia herba-alba are two medicinal plants widely used by the Moroccan population in the traditional treatment of several pathologies linked to inflammation. This study aimed to evaluate the single and combined antioxidant, anti-inflammatory and analgesic effects of the essential oils extracted from these two medicinal plants, and also their potential toxicity. Essential oils were extracted using hydro-distillation in a Clevenger-type apparatus. The antioxidant activity was evaluated by two methods: the scavenging of the free radical DPPH, and the reduction in iron. Anti-inflammatory activity was evaluated by evaluating the edema development induced by carrageenan injecting, while the analgesic power was evaluated according to the number of abdominal contortions induced by the intraperitoneal injection of acetic acid (0.7%). The acute oral toxicity was performed to assess the potential toxicity of the studied EOs, followed by an analysis of the blood biochemical parameters. The results of the two antioxidant tests indicated that our extract mixture exhibits good iron reduction capacity and very interesting DPPH free radical scavenging power, with an IC50 of around 4.38 ± 0.98 µg/mL higher than that of the benchmark antioxidant, BHT. The anti-inflammatory test demonstrated that the mixture administered orally at a dose of 150 mg/kg has a better activity, exceeding that of 1% Diclofenac, with a percentage of maximum inhibition of the edema of 89.99 ± 4.08. The number of cramps in the mice treated with the mixture at a dose of 150 mg/kg is significantly lower (29.80 ± 1.92) than those of the group treated with Tramadol (42.00 ± 2.70), respectively. The toxicity results show no signs of toxicity with an LD50 greater than 150 mg/Kg. These interesting results show that the two plants' EOs had an important anti-inflammatory, analgesic, and antioxidant activity, and also a powerful synergistic effect, which encourages further in-depth investigations on their pharmacological proprieties.
Assuntos
Artemisia/metabolismo , Óleos Voláteis/química , Thymus (Planta)/metabolismo , Analgésicos/química , Animais , Anti-Inflamatórios/química , Antioxidantes/química , Artemisia/química , Carragenina/uso terapêutico , Edema/tratamento farmacológico , Óleos Voláteis/farmacologia , Extratos Vegetais/química , Extratos Vegetais/farmacologia , Plantas Medicinais/efeitos dos fármacos , Ratos , Thymus (Planta)/químicaRESUMO
Withania frutescens L. is a wild perennial woody plant used by the local population for diverse therapeutic purposes. This work aims to study for the first time the potential inhibitory effect of this plant hydroethanolic extract on α-amylase and α-glucosidase activities using in vitro methods and its antidiabetic and antihyperglycemic activities using alloxan-induced diabetic mice as a model for experimental diabetes. Two doses were selected for the in vivo study (200 and 400 mg/kg) and glibenclamide, a well-known antidiabetic drug (positive control) in a subacute study (28 days) where the antihyperglycemic activity was also assessed over a period of 12 h on diabetic mice. The continuous treatment of diabetic mice with the extract of Withania frutescens for 4 weeks succeeded to slowly manage their high fasting blood glucose levels (after two weeks), while the antihyperglycemic test result revealed that the extract of this plant did not control hyperglycemia in the short term. No toxicity signs or death were noted for the groups treated with the plant extract, and it shows a protective effect on the liver and kidney. The in vitro assays demonstrated that the inhibition of alpha-amylase and alpha-glucosidase might be one of the mechanisms of action exhibited by the extract of this plant to control and prevent postprandial hyperglycemia. This work indicates that W. frutescens have an important long term antidiabetic effect that can be well established to treat diabetes.
Assuntos
Diabetes Mellitus Experimental/tratamento farmacológico , Inibidores de Glicosídeo Hidrolases , Hipoglicemiantes , Extratos Vegetais , Folhas de Planta/química , Withania/química , alfa-Amilases/antagonistas & inibidores , Animais , Diabetes Mellitus Experimental/enzimologia , Inibidores de Glicosídeo Hidrolases/química , Inibidores de Glicosídeo Hidrolases/farmacologia , Hipoglicemiantes/química , Hipoglicemiantes/farmacologia , Camundongos , Extratos Vegetais/química , Extratos Vegetais/farmacologiaRESUMO
Since their existence on earth, humans have used herbal medicine to meet their requirements for medication. The aim of the study: This work refers to a study conducted to carry out an ethnopharmacological survey of medicinal plants used for the treatment of cancer in Fez-Meknes region of Morocco. Material and Methods: To achieve this goal, 300 informants including 237 local people and 63 herbalists. They were requested to fill a survey related questionnaire aiming at the collection of data about the addressed objective. Informants were asked about the vernacular names, parts of medicinal plants used, mode of preparation, route of administration, reference area as well as the ecological distribution. The Relative Frequency of Citation (RFC) and Fidelity Level (FL) were calculated to identify the most effective plants recommended by informants for disease treatment. Results: The findings obtained in the present survey revealed that 94 species belonging to 47 families have been used for cancer treatment in the region of Fez-Meknes. Fruits, leaves, and seeds are the most commonly used plant parts, by the time powder and infusion arethe most common methods used fordrug preparations. Conclusion: This work may contribute towards the society as it provides interesting data on traditional medicinal knowledge of medicinal plantsused to fight cancer.
RESUMO
BACKGROUND: Anacyclus pyrethrum (A. pyrethrum) is a wild species belonging to the family Asteraceae, which is used in traditional medicines. AIM OF THE STUDY: This work was undertaken to study the chemical composition, analgesic, anti-inflammatory, and wound healing properties of hydroalcoholic extracts of different parts (roots, seeds, leaves, and capitula) of A. pyrethrum. Material and Methods: The phytochemical analysis of the studied extracts was conducted by GC-MS. The analgesic activity was evaluated in mice using acetic acid and formaldehyde methods. The anti-inflammatory activity was tested using the inhibitory method of edema induced in rats. The healing activity of the hydroethanolic extracts was explored by excision and incision wound healing models in rats. RESULTS: The phytochemical analysis of the studied plant extracts affirmed the presence of interesting compounds, including some newly detected elements, such as sarcosine, N-(trifluoroacetyl)-butyl ester, levulinic acid, malonic acid, palmitic acid, morphinan-6-One, 4,5.alpha.-epoxy-3-hydroxy-17-methyl, 2,4-undecadiene-8,10-diyne-N-tyramide, and isovaleric acid. The extracts of different parts (roots, seeds, leaves, and capitula) exhibited promising anti-inflammatory, analgesic, and wound healing effects, with percentages of inhibition up to 98%, 94%, and 100%, respectively. CONCLUSION: This study might contribute towards the well-being of society as it provides evidence on the potential analgesic, anti-inflammatory, and wound healing properties of A. pyrethrum.
Assuntos
Analgésicos/farmacologia , Anti-Inflamatórios/farmacologia , Asteraceae/química , Extratos Vegetais/farmacologia , Cicatrização/efeitos dos fármacos , Ácido Acético/análise , Analgésicos/administração & dosagem , Analgésicos/química , Animais , Anti-Inflamatórios/administração & dosagem , Anti-Inflamatórios/química , Edema/tratamento farmacológico , Cromatografia Gasosa-Espectrometria de Massas , Compostos Fitoquímicos/química , Compostos Fitoquímicos/farmacologia , Extratos Vegetais/administração & dosagem , Extratos Vegetais/química , Folhas de Planta/química , Raízes de Plantas/química , RatosRESUMO
Withania frutescens (W. frutescens) is a medicinal plant widely used to treat several diseases. This work aims to study phytochemical composition as well as acute and subacute toxicity of W. frutescens hydroethanolic extract in mice. The phytochemical composition of W. frutescens extract was performed using gas chromatographic analysis. Acute toxicity was studied in vivo with oral administration of single doses 400 mg/kg, 1000 mg/kg, and 2000 mg/kg for 14 days. Subacute toxicity was studied with the administration of repeated doses of 400 mg/kg/day and 2000 mg/kg/day for 28 days. Phytochemical analysis of W. frutescens hydro-ethanolic extract confirmed the presence of interesting chemical compounds. Acute toxicity results showed no toxic symptoms in mice treated with an increasing dose up to a maximum of 2000 mg/kg. Alongside acute toxicity, subacute data showed no clinical symptoms nor biochemical or histological alteration in mice treated with an increasing dose up to a maximum of 2000 mg/kg compared to the control group (p < 0.05). This study shows no toxic effects in animals treated with W. frutescens extract, and, therefore, this plant can be considered safe in animals up to 2000 mg/kg under both acute and subacute toxicity conditions.
Assuntos
Compostos Fitoquímicos/análise , Compostos Fitoquímicos/toxicidade , Extratos Vegetais/química , Extratos Vegetais/toxicidade , Folhas de Planta/química , Testes de Toxicidade Aguda , Withania/química , Animais , Peso Corporal/efeitos dos fármacos , Cromatografia Gasosa-Espectrometria de Massas , Camundongos , Tamanho do Órgão/efeitos dos fármacosRESUMO
Our objective in this work is evaluated the antibacterial, antifungal and antioxidant activity of the phytochymic compounds of the roots and leaves of a species Withania frutescens. In the first part, the phenolic compound is determinate by the Folin-Ciocalteau reaction, the richness of the roots in polyphenols (53.33⯱â¯1.20â¯mg EGA/g Extract) is six times higher than that of the leaves. The antioxidant test is evaluated by four methods: DPPH test, reducing power test (FRAP), total antioxidant capacity (CAT) and the ß-carotene discoloration test. The IC-50 values of the DPPH test of the studied parts are of the order of 0.36⯵g/ml and 6.63⯵g/ml, which showed a lower anti-free radical activity than that of BHT (0.12⯵g/ml). The results obtained by the FRAP method revealed a low reducing power of iron for two extracts (EC-50 of 0.45%) compared to Quercetine (EC-50 of 0.03%). The compounds of root and leaf extracts have a significant total antioxidant capacity, respectively 477.65⯱â¯37.60 and 317.03⯱â¯46.64â¯mg EAA/g Extract. In the ß-carotene discoloration test, extracts from the aerial and underground parts showed antioxidant activity of 57% followed by (36%), respectively. The evaluation of the antibacterial activity of in vitro extracts against microorganisms is carried out by two methods: disc diffusion and microdilution. The results show that the extracts exert an intermediate inhibitory effect (inhibition diameter between 8 and 15â¯mm, the smallest MIC obtained is 2.80â¯mg/ml) on all strains tested. The antifungal activity was estimated by determining the growth inhibition rate of the fungus tested. Indeed, the compounds studied exhibit a good antifungal effect since the minimum inhibitory concentration (MIC) of 4.5â¯mg/ml for root extract and 9â¯mg/ml for leaf extract.
Assuntos
Antibacterianos/farmacologia , Antifúngicos/farmacologia , Antioxidantes/farmacologia , Polifenóis/farmacologia , Withania/química , Etanol/química , Testes de Sensibilidade Microbiana , Extratos Vegetais/química , Extratos Vegetais/farmacologia , Polifenóis/isolamento & purificaçãoRESUMO
The genus Pistacia, with its species having notable ecological, economic, and medicinal implications, demonstrates remarkable environmental adaptability. The central objective of the study is to analyze interspecific variations between Pistacia atlantica subsp. atlantica and Pistacia terebinthus across three distinct bioclimatic zones in the Middle Atlas region of Morocco. The methodology includes collecting dendrometric measurements and conducting macromorphological examinations on these two taxa, with a detailed analysis of 27 qualitative and quantitative variables. A micro-morphological analysis of leaves, using scanning electron microscopy (SEM), is employed to explore specific features such as size and stomatal density, as well as qualitative aspects like epidermal cell shape and trichomes. Dendrometric measurements have revealed that the canopy surface and the number of trunks per tree can serve as distinctive features between the two species. Regarding the sex ratio of Pistacia atlantica subsp. atlantica, 59% of the examined trees are males, primarily associated with the jujube tree in arid zones and the dwarf palm in humid areas. In contrast, female Pistacia terebinthus exhibit a similar percentage, predominantly associated with oak groves and cade juniper in their distribution areas. Principal component analysis of biometric measurements emphasized a significant disparity between the two species, representing 60.25% of the total variance. The use of SEM unveiled new features facilitating the identification of the two species. By leveraging the macromorphological and micromorphological variability of pistachio trees, we can qualify those best suited to diverse bioclimates. In this regard, we suggest incorporating them into reforestation and rehabilitation programs aimed at restoring our declining ecosystems.
RESUMO
Introduction: This study investigates the potential effects of cannabis seed oil (CSO) on the wound healing process. The aim was to assess the efficacy of CSO in treating skin wounds using an animal model and to explore its anti-inflammatory properties through in silico analysis. Methods: Eighteen male albino Wistar rats, weighing between 200 and 250 g, were divided into three groups: an untreated negative control group, a group treated with the reference drug silver sulfadiazine (SSD) (0.01 g/mL), and a group treated topically with CSO (0.962 g/mL). The initial wound diameter for all groups was 1 cm. In silico studies were conducted using Maestro 11.5 to evaluate the anti-inflammatory effects of phytoconstituents against cyclooxygenase-1 (COX-1) and cyclooxygenase-2 (COX-2). Results: CSO and SSD treatments led to a significant reduction (p <0.05) in the size of burned skin wounds by day 5, with contraction rates of 53.95% and 45.94%, respectively, compared to the untreated negative control group. By day 15, wounds treated with CSO and SSD had nearly healed, showing contraction rates of 98.8% and 98.15%, respectively. By day 20, the wounds treated with CSO had fully healed (100%), while those treated with SSD had almost completely healed, with a contraction rate of 98.97%. Histological examination revealed granulated tissue, neo-blood vessels, fibroblasts, and collagen fibers in wounds treated with CSO. In silico studies identified arachidic acid, γ-linolenic acid, and linolenic acid as potent inhibitors of COX-1 and COX-2. Serum biochemical parameters indicated no significant changes (p > 0.05) in liver and kidney function in rats treated with CSO, whereas a significant increase (p < 0.01) in ALAT level was observed in rats treated with SSD. Discussion: The findings demonstrate that CSO has a promising effect on wound healing. The CSO treatment resulted in significant wound contraction and histological improvements, with no adverse effects on liver and kidney function.However, the study's limitations, including the small sample size and the need for detailed elucidation of CSO's mechanism of action, suggest that further research is necessary. Future studies should focus on exploring the molecular pathways and signaling processes involved in CSO's pharmacological effects.
RESUMO
The present work aimed at characterizing the phytochemical composition of Haplophyllum tuberculatum essential oil (HTEO), assessing its antifungal activity against various fungal strains, evaluating its insecticidal and repulsive properties against Callosobruchus maculatus, and determine its antioxidant capacity. To this end, Gas chromatography-mass spectrometry analysis detected 34 compounds in HTEO, with ß-Caryophyllene being the major constituent (36.94%). HTEO demonstrated predominantly modest antifungal effects, however, it sustains notable activity, particularly against Aspergillus flavus, with an inhibition rate of 76.50% ± 0.60%. Minimum inhibitory concentrations ranged from 20.53 ± 5.08 to 76.26 ± 5.08 mg/mL, effectively inhibiting fungal growth. Furthermore, the antifungal, and antioxidant activities of HTEO were evaluated in silico against the proteins Aspergillus flavus FAD glucose dehydrogenase, and beta-1,4-endoglucanase from Aspergillus niger, NAD(P)H Oxidase. Moreover, HTEO displayed strong insecticidal activity against C. maculatus, with contact and inhalation tests yielding LC50 values of 30.66 and 40.28 µL/100g, respectively, after 24 h of exposure. A dose of 5 µL/100g significantly reduced oviposition (48.85%) and inhibited emergence (45.15%) compared to the control group. Additionally, HTEO exhibited a high total antioxidant capacity of 758.34 mg AAE/g EO, highlighting its antioxidant potential. Insilico results showed that the antifungal activity of HTEO is mostly attributed to γ-Cadinene and p-Cymen-7-ol, while antioxidant is attributed to α-Terpinyl isobutyrate displayed. Overall, HTEO offers a sustainable and environmentally friendly alternative to synthetic products used to manage diseases.
RESUMO
Parsley (Petroselinum sativum Hoffm.) is renowned for its ethnomedicinal uses including managing pain, wound, and dermal diseases. We previously highlighted the estrogenic and anti-inflammatory properties of parsley and profiled the phytochemistry of its polyphenolic fraction using HPLC-DAD. To extend our investigation, we here characterized the phytochemical composition of the hydro-ethanolic extract using LC-MS/MS and GC-MS upon silylation, and evaluated the antioxidant, analgesic, antimicrobial, and wound healing activities of its hydro-ethanolic and polyphenolic fraction. The antioxidant property was assessed using FRAP, DPPH, and TAC assays. The antimicrobial activity was tested against four wound infectious microbes (Staphylococcus aureus, Pseudomonas aeruginosa and Candida albicans). The analgesic effect was studied using acetic acid (counting the number of writhes) and formalin (recording the licking and biting times) injections while the wound healing activity was evaluated using burn model in vivo. The LC-MS/MS showed that the hydro-ethanolic contains four polyphenols (oleuropein, arbutin, myricetin, and naringin) while GC-MS revealed that it contains 20 compounds including malic acid, D-glucose, and galactofuranoside. The hydro-ethanolic (1000 mg/kg) decreased abdominal writhes (38.96%) and licking time (37.34%). It also elicited a strong antioxidant activity using DPPH method (IC50 = 19.38 ± 0.15 µg/mL). Polyphenols exhibited a good antimicrobial effect (MIC = 3.125-12.5 mg/mL). Moreover, both extracts showed high wound contraction by 97.17% and 94.98%, respectively. This study provides evidence that P. sativum could serve as a source of bio-compounds exhibiting analgesic effect and their promising application in mitigating ROS-related disorders, impeding wound infections, and enhancing burn healing.
RESUMO
The plant Brocchia cinerea (Delile) (B. cinerea) has many uses in traditional pharmacology. Aqueous (BCAE) and ethanolic extracts (BCEE) obtained from the aerial parts can be used as an alternative to some synthetic drugs. In vitro, DPPH, FRAP and TAC are three tests used to measure antioxidant efficacy. Antibacterial activities were determined against one Gram positive and two Gram negative strains of bacteria. The analgesic power was evaluated in vivo using the abdominal contortion model in mice, while carrageenan-induced edema in rats was the model chosen for the anti-inflammatory test; wound healing was evaluated in an experimental second degree burn model. The results of the phytochemical analysis showed that BCEE had the greatest content of polyphenols (21.06 mg AGE/g extract), flavonoids (10.43 mg QE/g extract) and tannins (24.05 mg TAE/g extract). HPLC-DAD reveals the high content of gallic acid, quercetin and caffeic acid in extracts. BCEE has a strong antiradical potency against DPPH (IC50 = 0.14 mg/mL) and a medium iron reducing activity (EC50 = 0.24 mg/mL), while BCAE inhibited the growth of the antibiotic resistant bacterium, P. aeruginosa (MIC = 10 mg/mL). BCAE also exhibited significant pharmacological effects and analgesic efficacy (55.81% inhibition 55.64% for the standard used) and the re-epithelialization of wounds, with 96.91% against 98.60% for the standard. These results confirm the validity of the traditional applications of this plant and its potential as a model to develop analogous drugs.
RESUMO
The current study was conducted to investigate antifungal and insecticidal activities of essential oil extracted from the Moroccan Withania frutescens L. (EOW), and their chemical composition was profiled. To achieve this goal, EOW was extracted by the hydro-distillation method and their phytochemical constituents were characterized by gas chromatography-mass spectrometry analyses (GC-MS). Insecticidal activity was evaluated by use of four tests: contact toxicity, inhalation toxicity, and repellent tests. Antifungal activity was evaluated on Fusarium oxysporum f. sp. Ciceris (F. oxysporum) using different concentrations of EOW. GC/MS analysis revealed that EOW was rich in carvacrol (31.87%), thymol (30.08%), and camphor (9.13%). At a 1-µL/L dose, EOW exhibited mortality rates of 23.13 ± 1.07% and 24.41 ± 1.21% against Callosobruchus maculatus (C.maculatus) by inhalation and contact, respectively. Notably, EOW dose of 20 µL/L caused significant mortality rates of 95.1 ± 3.5% and 76.69 ± 1.71% by inhalation and contact, respectively. EOW exhibited an inhibitory effect on mycelial growth against the tested fungi F. oxysporum of 100% and 93.5 ± 1.1% for the 9 and 4.5 mg/mL doses, respectively. The reduced mycelial growth rate for F. oxysporum was recorded to be 0.3 ± 0.1 and 0.6 ± 0.1 mm/h for the EOW doses of 2.25 and 4.5 mg/mL, respectively. The outcome of the present work showed that EOW has a promising antifungal and insecticidal activity, and it can therefore be employed as a natural alternative insecticidal and mycocidal agent to replace the chemically-synthesized ones.
RESUMO
The reproductive system is essential for the structuring and transmission of genetic diversity. Understanding the reproductive biology of threatened endemic species is considered to be a crucial element for the implementation of effective conservation strategies. Given the lack of information and the insufficient state of knowledge on the reproductive system of Anacyclus pyrethrum L., a threatened medicinal species endemic to Morocco, we are the first to study the reproductive biology of two varieties of Anacyclus pyrethrum L.: Anacyclus pyrethrum var. pyrethrum (L.) Link and Anacyclus pyrethrum var. depressus (Ball.) Maire. The reproductive biology of the two varieties was examined in detail by studying the development of the inflorescence, phenology of flowering, breeding system, pollinators, production, and seed dispersal. The experimental results described in this work suggest that Anacyclus pyrethrum L. is a gynomonic species, with a mixed autogamy-allogamy reproductive regime with a high predominance of allogamy. It appears to be partially self-incompatible, with allogamy rates for Anacyclus pyrethrum var. depressus (Ball.) Maire and Anacyclus pyrethrum var. pyrethrum (L.) Link of 78.70% and 79.01%, respectively. It depends on pollination vectors to produce a large number of seeds. This study on the breeding system of Anacyclus pyrethrum L. provides a tool for developing management strategies and adequate conservation measures.
RESUMO
Juniperus thurifera is a native species to the mountains of the western Mediterranean region. It is used in traditional medicine as a natural treatment against infections. The present study aimed to carry out the chemical analysis and evaluate the antioxidant, antimicrobial, as well as in silico inhibition studies of the essential oils from Juniperus thurifera bark (EOEJT). Chemical characterization of EOEJT was done by gas chromatography (GC-MS). We have performed three antioxidant assays (Reducing power (FRAP), 2, 2-diphenylpicrylhydrazyl (DPPH), and total antioxidant capacity (TAC)) of the EOEJT. We next evaluated the antimicrobial activity against in silico study, which was carried out to help evaluate the inhibitory effect of EOEJT against NADPH oxidase. Results of the GC/MS analysis revealed seven major compounds in EOEJT wherein muurolol (36%) and elemol (26%) were the major components. Moreover, EOEJT possessed interesting antioxidant potential with an IC50 respectively of 21.25 ± 1.02 µg/mL, 481.02 ± 5.25 µg/mL, and 271 µg EAA/mg in DPPH, FRAP, and total antioxidant capacity systems. Molecular docking of EOEJT in NADPH oxidase active site showed inhibitory activity of α-cadinol and muurolol with a glide score of -6.041 and -5.956 Kcal/mol, respectively. As regards the antibacterial and antifungal capacities, EOEJT was active against all tested bacteria and all fungi, notably, against Escherichia coli K12 with an inhibition diameter of 21 mm and a MIC value of 0.67 mg/mL, as well as against Proteus mirabilis ATCC 29906 with an inhibition diameter of 18.33 ± 1.15 mm and a MIC value of 1.34 mg/mL. A more pronounced effect was recorded for the fungal pathogens Fusarium oxysporum MTCC 9913 with inhibition of 37.44 ± 0.28% and MIC value of 6.45 mg/mL, as well as against Candida albicans ATCC 10231 with an inhibition diameter of 20.33 ± 1.15 mm and a MIC value of 0.67 ± 0.00 mg/mL. Altogether, these results highlight the importance of EOEJT as a source of natural antibacterial and antioxidant drugs to fight clinically important pathogenic strains.
RESUMO
We earlier emphasized in vivo the lavender plant's (Lavandula officinalis Chaix.) anti-inflammatory and estrogenic activities and described the chemical compositions of its hydro-ethanolic (HE) extract. We used LC-MS/MS and GC-MS analyses to profile the phytochemical composition of the HE extract and to assess the analgesic and wound-healing effects of both the hydro-ethanolic (HE) and polyphenolic (LOP) extracts in vivo and in silico. The analgesic activity was studied using two methods: acetic acid and formalin injections in mice. The wound-healing activity was carried out over 25 days using a burn model in rats. In the in silico study, the polyphenols identified in the plant were docked in the active sites of three enzymes: casein kinase-1, cyclooxygenase-2, and glycogen synthase kinase-3ß. The LC-MS/MS identified some phenolic compounds, mainly apigenin, catechin, and myricetin, and the GC-MS analysis revealed the presence of 19 volatile compounds with triazole, D-glucose, hydroxyphenyl, and D-Ribofuranose as the major compounds. The HE and LOP extracts showed significant decreases in abdominal writhes, and the higher licking time of the paw (57.67%) was observed using the LOP extract at 200 mg/kg. Moreover, both extracts showed high healing percentages, i.e., 99.31 and 92.88%, compared to the control groups, respectively. The molecular docking showed that myricetin, amentoflavone, apigenin, and catechin are the most active molecules against the three enzyme receptors. This study sheds light on the potential of L. officinalis Chaix as a source of natural products for pharmaceutical applications for analgesic purposes as well as their utility in promoting burn-healing activity.
RESUMO
Herbal extracts are part of the solution to the increased demand for organic health care products. Traditionally, the different extracts prepared from Haplophyllum tuberculatum (Forsskal) A. Juss (H. tuberculatum) have been widely used to treat a wide range of illnesses. The aim of this study is to evaluate the antioxidant, analgesic, anti-inflammatory, and wound healing potential of the aqueous (HTAE) and ethanolic (HTEE) extracts of this plant as well as identify its major phytochemical components using LC-MS. Phytochemical analysis of both extracts revealed a rich composition and especially high amounts of glycosylic flavonols, 65.37% and 68.77% for the HTEE and HTAE, respectively. The antioxidant assays performed (DPPH, FRAP and TAC) indicated the excellent activity of the ethanolic extract while the in vivo activities (analgesic, anti-inflammatory, and healing potential) indicated the excellent activity of the aqueous extract. These findings support the therapeutic use of this plant by preventing pain and inflammation and promoting wound healing. To uncover, identify, and isolate compounds of potential medicinal and therapeutic significance, more studies on this species are required.
RESUMO
Antibiotics and synthetic pesticides are now playing a role in the spread of resistant pathogens. They continue to have negative consequences for animal and plant health. The goal of this work is to identify the chemical composition of Brocchia cinerea (Delile) Vis. essential oil (EO) using GC-MS(Gas Chromatography-Mass Spectrometer), evaluate its antimicrobial properties, and investigate its insecticidal and repellent effectiveness against Callosobruchus maculatus (C. maculatus). The GC-MS indicated the presence of 21 chemicals, with thujone (24.9%), lyratyl acetate (24.32%), camphor (13.55%), and 1,8-cineole (10.81%) being the most prominent. For the antimicrobial assay, the yeast Candida albicans was very sensitive to the EO with a growth inhibition diameter of (42.33 mm), followed by Staphylococcus aureus (31.33 mm). Fusarium oxysporum is the mycelia strain that appeared to be extremely sensitive to the utilized EO (88.44%) compared to the two species of Aspergillus (A. flavus (48.44%); A. niger (36.55%)). The results obtained in the microdilution method show that Pseudomonas aeruginosa was very sensitive to the EO, inhibited by a very low dose (0.0018 mg/mL). The minimum inhibitory concentration (MIC) results were between 0.0149 and 0.06 mg/mL. B. cinerea EO also demonstrated a potent insecticidal effect and a medium repulsive effect against C. maculatus. Thus, the LC50 value in the contact test was 0.61 µL/L of air, lower than that observed in the inhalation test (0.72 µL/L of air). The present study reveals that B. cinerea EO has the potential to be an antimicrobial and insecticidal agent with a better performance against several pathogenic microorganisms.