Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 23
Filtrar
1.
Eur J Immunol ; 46(12): 2749-2760, 2016 12.
Artigo em Inglês | MEDLINE | ID: mdl-27621211

RESUMO

Cardiac manifestations are a major cause of morbidity and mortality in patients with eosinophil-associated diseases. Eosinophils are thought to play a pathogenic role in myocarditis. We investigated the pathways that recruit eosinophils to the heart using a model of eosinophilic myocarditis, in which experimental autoimmune myocarditis (EAM) is induced in IFNγ-/- IL-17A-/- mice. Two conditions are necessary for efficient eosinophil trafficking to the heart: high eotaxin (CCL11, CCL24) expression in the heart and expression of the eotaxin receptor CCR3 by eosinophils. We identified cardiac fibroblasts as the source of CCL11 in the heart interstitium. CCL24 is produced by F4/80+ macrophages localized at inflammatory foci in the heart. Expression of CCL11 and CCL24 is controlled by Th2 cytokines, IL-4 and IL-13. To determine the relevance of this pathway in humans, we analyzed endomyocardial biopsy samples from myocarditis patients. Expression of CCL11 and CCL26 was significantly increased in eosinophilic myocarditis compared to chronic lymphocytic myocarditis and positively correlated with the number of eosinophils. Thus, eosinophil trafficking to the heart is dependent on the eotaxin-CCR3 pathway in a mouse model of EAM and associated with cardiac eotaxin expression in patients with eosinophilic myocarditis. Blocking this pathway may prevent eosinophil-mediated cardiac damage.


Assuntos
Quimiocina CCL11/metabolismo , Quimiocina CCL24/metabolismo , Eosinófilos/imunologia , Fibroblastos/imunologia , Macrófagos/imunologia , Miocardite/imunologia , Miocárdio/imunologia , Doença Autoimune do Sistema Nervoso Experimental/imunologia , Adulto , Idoso , Animais , Miosinas Cardíacas/imunologia , Movimento Celular , Células Cultivadas , Feminino , Humanos , Interferon gama/genética , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Knockout , Camundongos Transgênicos , Miocárdio/patologia , Receptores CCR3/genética , Equilíbrio Th1-Th2
2.
Eur J Immunol ; 46(3): 582-92, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26660726

RESUMO

Using a mouse model of experimental autoimmune myocarditis (EAM), we showed for the first time that IL-23 stimulation of CD4(+) T cells is required only briefly at the initiation of GM-CFS-dependent cardiac autoimmunity. IL-23 signal, acting as a switch, turns on pathogenicity of CD4(+) T cells, and becomes dispensable once autoreactivity is established. Il23a(-/-) mice failed to mount an efficient Th17 response to immunization, and were protected from myocarditis. However, remarkably, transient IL-23 stimulation ex vivo fully restored pathogenicity in otherwise nonpathogenic CD4(+) T cells raised from Il23a(-/-) donors. Thus, IL-23 may no longer be necessary to uphold inflammation in established autoimmune diseases. In addition, we demonstrated that IL-23-induced GM-CSF mediates the pathogenicity of CD4(+) T cells in EAM. The neutralization of GM-CSF abrogated cardiac inflammation. However, sustained IL-23 signaling is required to maintain IL-17A production in CD4(+) T cells. Despite inducing inflammation in Il23a(-/-) recipients comparable to wild-type (WT), autoreactive CD4(+) T cells downregulated IL-17A production without persistent IL-23 signaling. This divergence on the controls of GM-CSF-dependent pathogenicity on one side and IL-17A production on the other side may contribute to the discrepant efficacies of anti-IL-23 therapy in different autoimmune diseases.


Assuntos
Doenças Autoimunes/imunologia , Linfócitos T CD4-Positivos/imunologia , Fator Estimulador de Colônias de Granulócitos e Macrófagos/imunologia , Interleucina-23/metabolismo , Miocardite/imunologia , Transdução de Sinais , Animais , Modelos Animais de Doenças , Feminino , Interleucina-17/biossíntese , Interleucina-17/genética , Interleucina-23/deficiência , Interleucina-23/genética , Interleucina-23/farmacologia , Camundongos , Miocardite/fisiopatologia , Baço/citologia , Baço/efeitos dos fármacos , Baço/metabolismo , Células Th17/imunologia
3.
Am J Pathol ; 186(9): 2337-52, 2016 09.
Artigo em Inglês | MEDLINE | ID: mdl-27470712

RESUMO

Infections with Staphylococcus aureus are a continuing and growing problem in community and hospital settings. Preclinical animal modeling of S. aureus relies on experimental infection, which carries some limitations. We describe here a novel, spontaneous model of oral staphylococcal infection in double knockout mice, deficient in the receptors for IL-17 (IL-17RA) and interferon (IFN)-γ (IFNγRI), beginning at 6 to 8 weeks of age. IFNγRI(-/-)IL17RA(-/-) (GRAKO) mice developed progressive oral abscesses. Cytometric methods revealed extensive neutrophilic infiltration of oral tissues in GRAKO mice; further investigation evidenced that IL-17 predominated neutrophil defects in these mice. To investigate the contribution of IFN-γ signaling to this native host defense to S. aureus, we observed perturbations of monocyte recruitment and macrophage differentiation in the oral tissues of GRAKO mice, and CXCL9/chemokine ligand receptor (CXCR)3-driven recruitment of T-cell oral tissues and draining lymph nodes. To address the former finding, we depleted macrophages and monocytes in vivo from IL17RA(-/-) mice using liposomes loaded with clodronate. This treatment elicited oral abscesses, recapitulating the phenotype of GRAKO mice. From these findings, we propose novel collaborative functions of IL-17 and IFN-γ, acting through neutrophils and macrophages, respectively, in native mucocutaneous host defenses to S. aureus.


Assuntos
Interferon gama/imunologia , Interleucina-17/imunologia , Mucosa Bucal/imunologia , Mucosa Bucal/microbiologia , Infecções Estafilocócicas/imunologia , Staphylococcus aureus , Animais , Modelos Animais de Doenças , Ensaio de Imunoadsorção Enzimática , Citometria de Fluxo , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Knockout , Transdução de Sinais/imunologia
4.
Exp Mol Pathol ; 103(2): 141-152, 2017 10.
Artigo em Inglês | MEDLINE | ID: mdl-28822770

RESUMO

The extensive, diverse communities that constitute the microbiome are increasingly appreciated as important regulators of human health and disease through inflammatory, immune, and metabolic pathways. We sought to elucidate pathways by which microbiota contribute to inflammatory, autoimmune cardiac disease. We employed an animal model of experimental autoimmune myocarditis (EAM), which results in inflammatory and autoimmune pathophysiology and subsequent maladaptive cardiac remodeling and heart failure. Antibiotic dysbiosis protected mice from EAM and fibrotic cardiac dysfunction. Additionally, mice derived from different sources with different microbiome colonization profiles demonstrated variable susceptibility to disease. Unexpectedly, it did not track with segmented filamentous bacteria (SFB)-driven Th17 programming of CD4+ T cells in the steady-state gut. Instead, we found disease susceptibility to track with presence of type 3 innate lymphoid cells (ILC3s). Ablating ILCs by antibody depletion or genetic tools in adoptive transfer variants of the EAM model demonstrated that ILCs and microbiome profiles contributed to the induction of CCL20/CCR6-mediated inflammatory chemotaxis to the diseased heart. From these data, we conclude that sensing of the microbiome by ILCs is an important checkpoint in the development of inflammatory cardiac disease processes through their ability to elicit cardiotropic chemotaxis.


Assuntos
Antibacterianos/farmacologia , Doenças Autoimunes/imunologia , Coração/fisiopatologia , Linfócitos/imunologia , Microbiota , Miocardite/imunologia , Animais , Doenças Autoimunes/tratamento farmacológico , Doenças Autoimunes/metabolismo , Modelos Animais de Doenças , Disbiose/prevenção & controle , Linfócitos/efeitos dos fármacos , Linfócitos/metabolismo , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Knockout , Miocardite/tratamento farmacológico , Miocardite/metabolismo
5.
Am J Pathol ; 185(3): 847-61, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-25622543

RESUMO

Myocarditis is a leading cause of sudden cardiac failure in young adults. Natural killer (NK) cells, a subset of the innate lymphoid cell compartment, are protective in viral myocarditis. Herein, we demonstrated that these protective qualities extend to suppressing autoimmune inflammation. Experimental autoimmune myocarditis (EAM) was initiated in BALB/c mice by immunization with myocarditogenic peptide. During EAM, activated cardiac NK cells secreted interferon γ, perforin, and granzyme B, and expressed CD69, tumor necrosis factor-related apoptosis-inducing ligand treatment, and CD27 on their cell surfaces. The depletion of NK cells during EAM with anti-asialo GM1 antibody significantly increased myocarditis severity, and was accompanied by elevated fibrosis and a 10-fold increase in the percentage of cardiac-infiltrating eosinophils. The resultant influx of eosinophils to the heart was directly responsible for the increased disease severity in the absence of NK cells, because treatment with polyclonal antibody asialogangloside GM-1 did not augment myocarditis severity in eosinophil-deficient ΔdoubleGATA1 mice. We demonstrate that NK cells limit eosinophilic infiltration both indirectly, through altering eosinophil-related chemokine production by cardiac fibroblasts, and directly, by inducing eosinophil apoptosis in vitro. Altogether, we define a new pathway of eosinophilic regulation through interactions with NK cells.


Assuntos
Eosinófilos/imunologia , Células Matadoras Naturais/imunologia , Miocardite/imunologia , Miocárdio/imunologia , Animais , Apoptose/imunologia , Eosinófilos/patologia , Fibrose/imunologia , Fibrose/patologia , Inflamação/patologia , Células Matadoras Naturais/patologia , Camundongos , Camundongos Endogâmicos BALB C , Miocardite/patologia , Miocárdio/patologia
6.
J Autoimmun ; 75: 20-29, 2016 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-27545842

RESUMO

In the broad field of autoimmunity and clinical immunology, experimental evidence over the past few years have demonstrated several connections between the immune system and the nervous system, both central and peripheral, leading to the definition of neuroimmunology and of an immune-brain axis. Indeed, the central nervous system as an immune-privileged site, thanks to the blood-brain barrier, is no longer a dogma as the barrier may be altered during chronic inflammation with disruptive changes of endothelial cells and tight junctions, largely mediated by adenosine receptors and the expression of CD39/CD73. The diseases that encompass the neuroimmunology field vary from primary nervous diseases such as multiple sclerosis to systemic conditions with neuropsychiatric complications, such as systemic lupus erythematosus or vasculitidies. Despite potentially similar clinical manifestations, the pathogenesis of each condition is different, but the interaction between the ultra-specialized structure that is the nervous system and inflammation mediators are crucial. Two examples come from anti-dsDNA cross-reacting with anti-N-Methyl-d-Aspartate receptor (NMDAR) antibodies in neuropsychiatric lupus or the new family of antibody-associated neuronal autoimmune diseases including classic paraneoplastic syndromes with antibodies directed to intracellular antigens (Hu, Yo, Ri) and autoimmune encephalitis. In the case of multiple sclerosis, the T cell paradigm is now complicated by the growing evidence of a B cell involvement, particularly via aquaporin antibodies, and their influence on Th1 and Th17 lineages. Inspired by a productive AARDA-sponsored colloquium among experts we provide a critical review of the literature on the pathogenesis of different immune-mediated diseases with neurologic manifestations and we discuss the basic immunology of the central nervous system and the interaction between immune cells and the peripheral nervous system.


Assuntos
Autoimunidade/imunologia , Encéfalo/imunologia , Sistema Nervoso Central/imunologia , Sistema Imunitário/imunologia , Sistema Nervoso Periférico/imunologia , Autoanticorpos/imunologia , Encefalite/imunologia , Doença de Hashimoto/imunologia , Humanos , Lúpus Eritematoso Sistêmico/imunologia , Esclerose Múltipla/imunologia
7.
Clin Immunol ; 159(2): 183-8, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-26003843

RESUMO

Although the mechanisms by which the human microbiome influences the onset and progression of autoimmune diseases remain to be determined, established animal models of autoimmune diseases indicate that local and systemic bidirectional interactions with the microbiome play a signaling or promoting role through the immune system. Whether alterations in the microbiome are a pathogenic cause or simply an effect of inflammation and autoimmune disease remains an essential question to be addressed in disease-specific research, as well as whether particular conditions of the microbiome promote health or promote disease. Future research in this area needs to account for sex differences in microbiome composition because autoimmune diseases disproportionately affect women. Probiotic and other treatments that manipulate assemblage of the microbiome may offer methods of preventing or mitigating the effects of autoimmune disease.


Assuntos
Doenças Autoimunes/imunologia , Dieta , Microbioma Gastrointestinal/imunologia , Imunidade nas Mucosas/imunologia , Animais , Doenças Autoimunes/microbiologia , Epigênese Genética , Feminino , Microbioma Gastrointestinal/genética , Humanos , Masculino , Camundongos , Microbiota/genética , Microbiota/imunologia , Fatores Sexuais
8.
J Immunol ; 191(8): 4038-47, 2013 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-24048893

RESUMO

CD4(+) T cells play a central role in inflammatory heart disease, implicating a cytokine product associated with Th cell effector function as a necessary mediator of this pathophysiology. IFN-γ-deficient mice developed severe experimental autoimmune myocarditis (EAM), in which mice are immunized with cardiac myosin peptide, whereas IL-17A-deficient mice were protected from progression to dilated cardiomyopathy. We generated IFN-γ(-/-)IL-17A(-/-) mice to assess whether IL-17 signaling was responsible for the severe EAM of IFN-γ(-/-) mice. Surprisingly, IFN-γ(-/-)IL-17A(-/-) mice developed a rapidly fatal EAM. Eosinophils constituted a third of infiltrating leukocytes, qualifying this disease as eosinophilic myocarditis. We found increased cardiac production of CCL11/eotaxin, as well as Th2 deviation, among heart-infiltrating CD4(+) cells. Ablation of eosinophil development improved survival of IFN-γ(-/-)IL-17A(-/-) mice, demonstrating the necessity of eosinophils in fatal heart failure. The severe and rapidly fatal autoimmune inflammation that developed in the combined absence of IFN-γ and IL-17A constitutes a novel model of eosinophilic heart disease in humans. This is also, to our knowledge, the first demonstration that eosinophils have the capacity to act as necessary mediators of morbidity in an autoimmune process.


Assuntos
Linfócitos T CD4-Positivos/imunologia , Eosinófilos/imunologia , Interferon gama/deficiência , Interleucina-17/deficiência , Miocardite/imunologia , Animais , Doenças Autoimunes/imunologia , Doenças Autoimunes/prevenção & controle , Biomarcadores , Miosinas Cardíacas/imunologia , Cardiomiopatias/imunologia , Quimiocina CCL11/biossíntese , Inflamação , Interferon gama/genética , Interferon gama/imunologia , Interleucina-17/genética , Interleucina-17/imunologia , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Knockout , Miocardite/genética , Miocardite/prevenção & controle , Miocárdio/imunologia , Miosite
9.
Eur J Immunol ; 42(3): 726-36, 2012 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-22161142

RESUMO

The involvement of macrophages (MΦs) in Th17-cell responses is still poorly understood. While neutrophils are thought to be the predominant effector of Th17-cell responses, IL-17 is also known to induce myelotropic chemokines and growth factors. Other T-cell-derived cytokines induce non-classical functions, suggesting that IL-17 sigxnaling may similarly elicit unique MΦ functions. Here, we characterized the expression of subunits of the IL-17 receptor on primary murine MΦs from different anatomical compartments. The greatest expression of IL-17 receptors was observed on mucosal Ly6C(hi) "inflammatory" MΦs. We further observed upregulation of IL-17 receptors in vitro on bone marrow-derived macrophages (BMMΦs) in response to peptidoglycan or CpG oligonucleotide stimuli, and in vivo, upon CFA administration. Macrophages expressing IL-17 receptors were observed infiltrating the hearts of mice with myocarditis, and genetic ablation of IL-17RA altered MΦ recruitment. Treating primary MΦs from a wide variety of different anatomic sources (as well as cell lines) with IL-17A induced the production of unique profiles of cytokines and chemokines, including GM-CSF, IL-3, IL-9, CCL4/MIP-1ß and CCL5/RANTES. IL-17A also induced production of IL-12p70; IL-17-signaling-deficient MΦs elicited diminished IFN-γ production by responding DO11.10 CD4(+) T cells when used as APCs. These data indicate that MΦs from different anatomic locations direct IL-17-mediated responses.


Assuntos
Interleucina-17/imunologia , Ativação de Macrófagos/imunologia , Macrófagos/imunologia , Miocardite/imunologia , Animais , Quimiocinas/imunologia , Feminino , Citometria de Fluxo , Inflamação/imunologia , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Knockout , Receptores de Interleucina-17/imunologia , Organismos Livres de Patógenos Específicos , Regulação para Cima/imunologia
10.
Circ Res ; 106(10): 1646-55, 2010 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-20378858

RESUMO

RATIONALE: One-third of myocarditis cases progresses to dilated cardiomyopathy (DCM), but the mechanisms controlling this process are largely unknown. CD4(+) T helper (Th)17 cells have been implicated in the pathogenesis of autoimmune diseases, but the role of Th17-produced cytokines during inflammation-induced cardiac remodeling has not been previously studied. OBJECTIVE: We examined the importance of interleukin (IL)-17A in the progression of myocarditis to DCM using a mouse model. METHODS AND RESULTS: Immunization of mice with myocarditogenic peptide in complete Freund's adjuvant induced the infiltration of IL-17A-producing Th17 cells into the inflamed heart. Unexpectedly, IL-17A-deficient mice developed myocarditis with similar incidence and severity compared to wild-type mice. Additionally, IL-17A deficiency did not ameliorate the severe myocarditis of interferon (IFN)gamma-deficient mice, suggesting that IL-17A plays a minimal role during acute myocarditis. In contrast, IL-17A-deficient mice were protected from postmyocarditis remodeling and did not develop DCM. Flow cytometric and cytokine analysis revealed an important role for IL-17A in heart-specific upregulation of IL-6, TNFalpha, and IL-1beta and the recruitment of CD11b(+) monocyte and Gr1(+) granulocyte populations into the heart. Furthermore, IL-17A-deficient mice had reduced interstitial myocardial fibrosis, downregulated expression of matrix metalloproteinase-2 and -9 and decreased gelatinase activity. Treatment of BALB/c mice with anti-IL-17A monoclonal antibody administered after the onset of myocarditis abrogated myocarditis-induced cardiac fibrosis and preserved ventricular function. CONCLUSIONS: Our findings reveal a critical role for IL-17A in postmyocarditis cardiac remodeling and the progression to DCM. Targeting IL-17A may be an attractive therapy for patients with inflammatory dilated cardiomyopathy.


Assuntos
Cardiomiopatias/fisiopatologia , Interleucina-17/fisiologia , Miocardite/fisiopatologia , Animais , Antígenos CD/imunologia , Linfócitos T CD4-Positivos/imunologia , Quimiocinas/metabolismo , Citocinas/metabolismo , Modelos Animais de Doenças , Progressão da Doença , Citometria de Fluxo , Imunização , Inflamação/fisiopatologia , Interleucina-17/deficiência , Interleucina-17/genética , Interleucina-17/imunologia , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Knockout , Camundongos Transgênicos , Função Ventricular Esquerda/fisiologia , Remodelação Ventricular/fisiologia
11.
Exp Mol Pathol ; 89(2): 83-91, 2010 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-20599938

RESUMO

A protective effect of interferon-gamma (IFNγ) has been described in a number of models of autoimmune disease, including experimental autoimmune myocarditis (EAM). Some reports have suggested that regulation of apoptosis in autoreactive lymphocytes mediate these protective functions. We examined the potential of IFNγ to regulate apoptotic mechanisms in detail, both in vitro and in vivo in EAM. We observed multiple apoptotic defects in caspase activity, and the expression of TNF superfamily members on CD4(+) T cells. In addition, we observed selective defects in CD4(+) T cell activation in response to antigenic stimulation. These activation and apoptotic defects were CD4(+) cell autonomous, independent of the genotype of APCs. Inhibition of nitric oxide production in vivo did not reproduce the severe form of EAM of IFNγ-deficient mice, indicating that this pathway does not mediate the protective effect of IFNγ. Crosswise adoptive transfer of wild type, IFNγ(-/-), and IFNγR(-/-)EAM demonstrated that IFNγ signaling was critical in CD4(+) cells, but that non-CD4(+) sources of IFNγ production were also involved in the control of disease. Together, these data indicate multiple mechanisms of autonomous and non-autonomous CD4(+) T cell regulation mediated by IFNγ in the control of autoimmune heart disease.


Assuntos
Doenças Autoimunes/imunologia , Linfócitos T CD4-Positivos/fisiologia , Interferon gama/fisiologia , Miocardite/genética , Miocardite/imunologia , Animais , Apoptose , Doenças Autoimunes/genética , Feminino , Interferon gama/imunologia , Ativação Linfocitária/imunologia , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Knockout , Proteínas Recombinantes , Organismos Livres de Patógenos Específicos
12.
Am J Pathol ; 172(5): 1195-208, 2008 May.
Artigo em Inglês | MEDLINE | ID: mdl-18403598

RESUMO

We report here that interleukin (IL)-13 protects BALB/c mice from myocarditis, whether induced by peptide immunization or by viral infection. In contrast to mild disease in IL-4 knockout (KO) BALB/c mice, IL-13 KO BALB/c mice developed severe coxsackievirus B3 (CVB3)-induced autoimmune myocarditis and myocarditogenic peptide-induced experimental autoimmune myocarditis. Such severe disease was characterized by increased cardiac inflammation, increased total intracardiac CD45(+) leukocytes, elevated anti-cardiac myosin autoantibodies, and increased cardiac fibrosis. Echocardiography revealed that IL-13 KO mice developed severe dilated cardiomyopathy with impaired cardiac function and heart failure. Hearts of IL-13 KO mice had increased levels of the proinflammatory and profibrotic cytokines IL-1beta, IL-18, interferon-gamma, transforming growth factor-beta1, and IL-4 as well as histamine. The hallmark of the disease in IL-13 KO mice was the up-regulation of T-cell responses. CD4(+) T cells were increased in IL-13 KO hearts both proportionally and in absolute number. Splenic T cells from IL-13 KO mice were highly activated, and myosin stimulation additionally increased T-cell proliferation. CD4(+)CD25(+)Foxp3(+) regulatory T-cell numbers were decreased in the spleens of IL-13 KO mice. IL-13 deficiency led to decreased levels of alternatively activated CD206(+) and CD204(+) macrophages and increased levels of classically activated macrophages. IL-13 KO mice had increased caspase-1 activation, leading to increased production of both IL-1beta and IL-18. Therefore, IL-13 protects against myocarditis by modulating monocyte/macrophage populations and by regulating their function.


Assuntos
Doenças Autoimunes/metabolismo , Infecções por Coxsackievirus/metabolismo , Interleucina-13/fisiologia , Macrófagos/imunologia , Miocardite/metabolismo , Animais , Doenças Autoimunes/imunologia , Linfócitos T CD4-Positivos/imunologia , Cardiomiopatia Dilatada/imunologia , Cardiomiopatia Dilatada/metabolismo , Diferenciação Celular , Infecções por Coxsackievirus/imunologia , Citocinas/imunologia , Modelos Animais de Doenças , Insuficiência Cardíaca/imunologia , Insuficiência Cardíaca/metabolismo , Interleucina-13/genética , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Knockout , Miocardite/imunologia
13.
Cell Rep ; 28(1): 172-189.e7, 2019 07 02.
Artigo em Inglês | MEDLINE | ID: mdl-31269438

RESUMO

Two types of monocytes, Ly6Chi and Ly6Clo, infiltrate the heart in murine experimental autoimmune myocarditis (EAM). We discovered a role for cardiac fibroblasts in facilitating monocyte-to-macrophage differentiation of both Ly6Chi and Ly6Clo cells, allowing these macrophages to perform divergent functions in myocarditis progression. During the acute phase of EAM, IL-17A is highly abundant. It signals through cardiac fibroblasts to attenuate efferocytosis of Ly6Chi monocyte-derived macrophages (MDMs) and simultaneously prevents Ly6Clo monocyte-to-macrophage differentiation. We demonstrated an inverse clinical correlation between heart IL-17A levels and efferocytic receptor expressions in humans with heart failure (HF). In the absence of IL-17A signaling, Ly6Chi MDMs act as robust phagocytes and are less pro-inflammatory, whereas Ly6Clo monocytes resume their differentiation into MHCII+ macrophages. We propose that MHCII+Ly6Clo MDMs are associated with the reduction of cardiac fibrosis and prevention of the myocarditis sequalae.


Assuntos
Antígenos Ly/metabolismo , Diferenciação Celular/efeitos dos fármacos , Fibroblastos/metabolismo , Interleucina-17/farmacologia , Macrófagos/metabolismo , Monócitos/metabolismo , Miocardite/metabolismo , Animais , Proliferação de Células/efeitos dos fármacos , Modelos Animais de Doenças , Fibroblastos/citologia , Fibroblastos/ultraestrutura , Humanos , Inflamação/metabolismo , Interleucina-17/genética , Interleucina-17/metabolismo , Macrófagos/citologia , Macrófagos/ultraestrutura , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Knockout , Microscopia Eletrônica de Transmissão , Monócitos/citologia , Miocardite/induzido quimicamente , Miocardite/patologia , Miocárdio/citologia , Miocárdio/patologia , Parabiose , Transdução de Sinais , Transcriptoma/genética , c-Mer Tirosina Quinase/metabolismo
14.
Int Immunopharmacol ; 8(5): 624-33, 2008 May.
Artigo em Inglês | MEDLINE | ID: mdl-18387504

RESUMO

We evaluated the efficacy of the Ligand Epitope Antigen Presentation System (L.E.A.P.S.trade mark) in preventing or treating experimental autoimmune myocarditis (EAM) in A/J mice. L.E.A.P.S. (here, J-My-1) is a conjugate of the myocarditogenic peptide of cardiac myosin MyHCalpha(334-352) (My-1) and J peptide, derived from the sequence of human beta-2 microglobulin. Remarkably, early prophylactic (J-My-1 injected on days -14 and -7 before EAM induction), late prophylactic (J-My-1 injected on days 0, 7, 14, and 21), and therapeutic (J-My-1 injected on days 7, 14, and 21 or 10, 17 and 24) administration of J-My-1 significantly decreased the incidence and severity of EAM. However, extended therapeutic treatment was associated with anaphylaxis and death, corresponding with global immune activation associated with J-My-1 treatment. In J-My1-treated animals, we observed expanded numbers of activated CD69+ and CD44+ CD4+ and CD8+ T cells in the spleens. J-My-1 treatment also increased the proportion of CD11c+ dendritic cells in spleens and induced strong production of anti-J-My-1 specific antibodies. J-My-1 injections resulted in decreased levels of chemokines MIP-1alpha and IP-10 in hearts. We propose that J-My-1 treatment interferes with trafficking of autoaggressive immune cells to the heart.


Assuntos
Apresentação de Antígeno/efeitos dos fármacos , Doenças Autoimunes/tratamento farmacológico , Epitopos/efeitos dos fármacos , Cadeias J de Imunoglobulina/farmacologia , Miocardite/tratamento farmacológico , Miocárdio/patologia , Animais , Doenças Autoimunes/patologia , Proliferação de Células/efeitos dos fármacos , Quimiocina CCL3/biossíntese , Quimiocina CXCL10/biossíntese , Quimiocinas/biossíntese , Anergia Clonal/efeitos dos fármacos , Citocinas/metabolismo , Células Dendríticas/efeitos dos fármacos , Ensaio de Imunoadsorção Enzimática , Feminino , Liberação de Histamina/efeitos dos fármacos , Ligantes , Camundongos , Camundongos Endogâmicos A , Miocardite/patologia , Miocárdio/metabolismo , Baço/citologia , Baço/efeitos dos fármacos , Células Th1/efeitos dos fármacos , Células Th2/efeitos dos fármacos
15.
Immun Inflamm Dis ; 5(2): 163-176, 2017 06.
Artigo em Inglês | MEDLINE | ID: mdl-28474508

RESUMO

INTRODUCTION: Complete Freund's Adjuvant (CFA) emulsified with an antigen is a widely used method to induce autoimmune disease in animal models, yet the contribution of CFA to the immune response is not well understood. We compared the effectiveness of CFA with Incomplete Freund's Adjuvant (IFA) or TiterMax Gold Adjuvant (TMax) in experimental autoimmune myocarditis (EAM) in male mice. METHODS: EAM was induced in A/J, BALB/c, and IL6KO BALB/c male mice by injection of the myocarditogenic peptide in CFA, IFA, or TMax on days 0 and 7. EAM severity was analyzed by histology on day 21. In addition, specific flow cytometry outcomes were evaluated on day 21. RESULTS: Only mice immunized with CFA and myocarditogenic peptide on both days 0 and 7 developed substantial myocarditis as measured by histology. We observed a significantly increased level of IL6 in the spleen 3 days after CFA immunization. In the spleen and heart on day 21, there was an expansion of myeloid cells in CFA-immunized mice, as compared to IFA or TMax-immunized animals. Recombinant IL-6 at the time of IFA immunization partially restored susceptibility of the mice to EAM. We also treated EAM-resistant IL-6 knockout mice with recombinant IL-6 around the time of the first immunization, on days -1 to 2, completely restoring disease susceptibility, showing that the requirement for IL-6 coincides with primary immunization. Examining APC populations in the lymph node draining the immunization site evidenced the contribution of IL-6 to the CFA-dependence of EAM was through controlling local dendritic cell (DC) trafficking. CONCLUSIONS: CFA used with myocarditogenic peptide twice is required to induce EAM in both A/J and Balb/c mice. Although IFA and TiterMax induce antibody responses, only CFA preferentially induced autoantigen-specific responses. CFA expands monocytes in the heart and in the spleen. IL-6 signaling is required during short window around primary immunization to induce EAM. In addition, IL-6 deficient mice resistance to EAM could be reversed by injecting IL-6 around first immunization. IL-6 expands dendritic cell and monocytic populations and ultimately leads to a robust T-cell driven immune response in CFA immunized mice.


Assuntos
Doenças Autoimunes/induzido quimicamente , Doenças Autoimunes/imunologia , Adjuvante de Freund/efeitos adversos , Interleucina-6/imunologia , Miocardite/induzido quimicamente , Miocardite/imunologia , Animais , Doenças Autoimunes/genética , Doenças Autoimunes/patologia , Adjuvante de Freund/farmacologia , Interleucina-6/genética , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Knockout , Miocardite/genética , Miocardite/patologia
16.
J Exp Med ; 214(4): 943-957, 2017 04 03.
Artigo em Inglês | MEDLINE | ID: mdl-28302646

RESUMO

Inflammatory dilated cardiomyopathy (DCMi) is a major cause of heart failure in children and young adults. DCMi develops in up to 30% of myocarditis patients, but the mechanisms involved in disease progression are poorly understood. Patients with eosinophilia frequently develop cardiomyopathies. In this study, we used the experimental autoimmune myocarditis (EAM) model to determine the role of eosinophils in myocarditis and DCMi. Eosinophils were dispensable for myocarditis induction but were required for progression to DCMi. Eosinophil-deficient ΔdblGATA1 mice, in contrast to WT mice, showed no signs of heart failure by echocardiography. Induction of EAM in hypereosinophilic IL-5Tg mice resulted in eosinophilic myocarditis with severe ventricular and atrial inflammation, which progressed to severe DCMi. This was not a direct effect of IL-5, as IL-5TgΔdblGATA1 mice were protected from DCMi, whereas IL-5-/- mice exhibited DCMi comparable with WT mice. Eosinophils drove progression to DCMi through their production of IL-4. Our experiments showed eosinophils were the major IL-4-expressing cell type in the heart during EAM, IL-4-/- mice were protected from DCMi like ΔdblGATA1 mice, and eosinophil-specific IL-4 deletion resulted in improved heart function. In conclusion, eosinophils drive progression of myocarditis to DCMi, cause severe DCMi when present in large numbers, and mediate this process through IL-4.


Assuntos
Cardiomiopatia Dilatada/etiologia , Eosinófilos/fisiologia , Interleucina-4/fisiologia , Miocardite/complicações , Animais , Doenças Autoimunes/complicações , Progressão da Doença , Fibrose , Humanos , Interferon gama/fisiologia , Interleucina-13/fisiologia , Interleucina-17/fisiologia , Interleucina-5/fisiologia , Camundongos , Camundongos Endogâmicos BALB C
17.
J Exp Med ; 211(7): 1449-64, 2014 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-24935258

RESUMO

Inflammatory dilated cardiomyopathy (DCMi) is a major cause of heart failure in individuals below the age of 40. We recently reported that IL-17A is required for the development of DCMi. We show a novel pathway connecting IL-17A, cardiac fibroblasts (CFs), GM-CSF, and heart-infiltrating myeloid cells with the pathogenesis of DCMi. Il17ra(-/-) mice were protected from DCMi, and this was associated with significantly diminished neutrophil and Ly6Chi monocyte/macrophage (MO/MΦ) cardiac infiltrates. Depletion of Ly6Chi MO/MΦ also protected mice from DCMi. Mechanistically, IL-17A stimulated CFs to produce key chemokines and cytokines that are critical downstream effectors in the recruitment and differentiation of myeloid cells. Moreover, IL-17A directs Ly6Chi MO/MΦ in trans toward a more proinflammatory phenotype via CF-derived GM-CSF. Collectively, this IL-17A-fibroblast-GM-CSF-MO/MΦ axis could provide a novel target for the treatment of DCMi and related inflammatory cardiac diseases.


Assuntos
Cardiomiopatia Dilatada/imunologia , Fibroblastos/imunologia , Interleucina-17/imunologia , Miocárdio/imunologia , Animais , Cardiomiopatia Dilatada/genética , Cardiomiopatia Dilatada/patologia , Fibroblastos/patologia , Fator Estimulador de Colônias de Granulócitos e Macrófagos/genética , Fator Estimulador de Colônias de Granulócitos e Macrófagos/imunologia , Interleucina-17/genética , Macrófagos/imunologia , Macrófagos/patologia , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Knockout , Monócitos/imunologia , Monócitos/patologia , Miocárdio/patologia , Infiltração de Neutrófilos/genética , Infiltração de Neutrófilos/imunologia , Neutrófilos/imunologia , Neutrófilos/patologia
18.
Ann N Y Acad Sci ; 1285: 80-96, 2013 May.
Artigo em Inglês | MEDLINE | ID: mdl-23692566

RESUMO

This review focuses on autoimmune myocarditis and its sequela, inflammatory dilated cardiomyopathy (DCMI), and the inflammatory and immune mechanisms underlying the pathogenesis of these diseases. Several mouse models of myocarditis and DCMI have improved our knowledge of the pathogenesis of these diseases, informing more general problems of cardiac remodeling and heart failure. CD4(+) T cells are critical in driving the pathogenesis of myocarditis. We discuss in detail the role of T helper cell subtypes in the pathogenesis of myocarditis, the biology of T cell-derived effector cytokines, and the participation of other leukocytic effectors in mediating disease pathophysiology. We discuss interactions between these subsets in both suppressive and collaborative fashions. These findings indicate that cardiac inflammatory disease, and autoimmunity in general, may be more diverse in divergent effector mechanisms than has previously been appreciated.


Assuntos
Doenças Autoimunes/imunologia , Doenças Autoimunes/patologia , Linfócitos T CD4-Positivos/imunologia , Linfócitos T CD4-Positivos/patologia , Miocardite/imunologia , Miocardite/patologia , Animais , Cardiomiopatia Dilatada/imunologia , Cardiomiopatia Dilatada/patologia , Modelos Animais de Doenças , Humanos , Inflamação/imunologia , Inflamação/patologia , Camundongos
19.
Immunobiology ; 217(5): 468-75, 2012 May.
Artigo em Inglês | MEDLINE | ID: mdl-21820754

RESUMO

Cardiac inflammatory disease represents a significant public health burden, and interesting questions of immunopathologic science and clinical inquiry. Novel insights into the diverse programming and functions within the macrophage lineages in recent years have yielded a view of these cells as dynamic effectors and regulators of immunity, host defense, and inflammatory disease. In this review, we examine and discuss recent investigations into the complex participation of mononuclear phagocytic cells in the pathology of animal models of myocarditis.


Assuntos
Macrófagos/imunologia , Miocardite/imunologia , Animais , Doenças Autoimunes/imunologia , Humanos , Monócitos/imunologia , Neoplasias/imunologia , Linfócitos T/imunologia
20.
Circ Heart Fail ; 5(3): 366-75, 2012 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-22454393

RESUMO

BACKGROUND: IL-33 through its receptor ST2 protects the heart from myocardial infarct and hypertrophy in animal models but, paradoxically, increases autoimmune disease. In this study, we examined the effect of IL-33 or ST2 administration on autoimmune heart disease. METHODS AND RESULTS: We used pressure-volume relationships and isoproterenol challenge to assess the effect of recombinant (r) IL-33 or rST2 (eg, soluble ST2) administration on the development of autoimmune coxsackievirus B3 myocarditis and dilated cardiomyopathy in male BALB/c mice. The rIL-33 treatment significantly increased acute perimyocarditis (P=0.006) and eosinophilia (P=1.3×10(-5)), impaired cardiac function (maximum ventricular power, P=0.0002), and increased ventricular dilation (end-diastolic volume, P=0.01). The rST2 treatment prevented eosinophilia and improved heart function compared with rIL-33 treatment (ejection fraction, P=0.009). Neither treatment altered viral replication. The rIL-33 treatment increased IL-4, IL-33, IL-1ß, and IL-6 levels in the heart during acute myocarditis. To determine whether IL-33 altered cardiac function on its own, we administered rIL-33 to undiseased mice and found that rIL-33 induced eosinophilic pericarditis and adversely affected heart function. We used cytokine knockout mice to determine that this effect was due to IL-33-mediated signaling but not to IL-1ß or IL-6. CONCLUSIONS: We show for the first time to our knowledge that IL-33 induces eosinophilic pericarditis, whereas soluble ST2 prevents eosinophilia and improves systolic function, and that IL-33 independently adversely affects heart function through the IL-33 receptor.


Assuntos
Cardiomiopatia Dilatada/etiologia , Cardiomiopatia Dilatada/prevenção & controle , Eosinofilia/etiologia , Coração/fisiopatologia , Interleucinas/efeitos adversos , Pericardite/etiologia , Receptores de Interleucina/uso terapêutico , Animais , Doenças Autoimunes/etiologia , Doenças Autoimunes/prevenção & controle , Doenças Autoimunes/virologia , Cardiomiopatia Dilatada/metabolismo , Infecções por Coxsackievirus/complicações , Modelos Animais de Doenças , Eosinofilia/prevenção & controle , Eosinofilia/virologia , Coração/efeitos dos fármacos , Proteína 1 Semelhante a Receptor de Interleucina-1 , Interleucina-1beta/deficiência , Interleucina-1beta/genética , Interleucina-1beta/metabolismo , Interleucina-33 , Interleucina-6/deficiência , Interleucina-6/genética , Interleucina-6/metabolismo , Interleucinas/farmacologia , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Camundongos Knockout , Miocárdio/metabolismo , Pericardite/prevenção & controle , Pericardite/virologia , Proteínas Recombinantes/efeitos adversos , Proteínas Recombinantes/farmacologia , Proteínas Recombinantes/uso terapêutico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA