Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Langmuir ; 40(3): 1688-1697, 2024 01 23.
Artigo em Inglês | MEDLINE | ID: mdl-38186288

RESUMO

We report the effect of tail-tethering on vesiculation and complete unbinding of bilayered membranes. Amphiphilic molecules of a bolalipid, resembling the tail-tethered molecular structure of archaeal lipids, with two identical zwitterionic phosphatidylcholine headgroups self-assemble into a large flat lamellar membrane, in contrast to the multilamellar vesicles (MLVs) observed in its counterpart, monopolar nontethered zwitterionic lipids. The antivesiculation is confirmed by small-angle X-ray scattering (SAXS) and cryogenic transmission electron microscopy (cyro-TEM). With the net charge of zero and higher bending rigidity of the membrane (confirmed by neutron spin echo (NSE) spectroscopy), the current membrane theory would predict that membranes should stack with each other (aka "bind") due to dominant van der Waals attraction, while the outcome of the nonstacking ("unbinding") membrane suggests that the theory needs to include entropic contribution for the nonvesicular structures. This report pioneers an understanding of how the tail-tethering of amphiphiles affects the structure, enabling better control over the final nanoscale morphology.


Assuntos
Bicamadas Lipídicas , Fosfatidilcolinas , Espalhamento a Baixo Ângulo , Difração de Raios X , Fosfatidilcolinas/química , Estrutura Molecular , Microscopia Eletrônica de Transmissão , Bicamadas Lipídicas/química
2.
J Colloid Interface Sci ; 630(Pt A): 629-637, 2023 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-36272217

RESUMO

HYPOTHESIS: A well-defined discoidal bicelle composed of three lipids, specifically zwitterionic long-chain 1,2­dipalmitoyl phosphocholine (DPPC) and short-chain 1,2­dihexanoyl phosphocholine (DHPC) doped with anionic 1,2­dipalmitoyl phosphoglycerol (DPPG) provides a generalized template for the synthesis of hydrophobic polymer nano-rings. The lipid molar ratio of DPPC/DHPC/DPPG is 0.71/0.25/0.04. The detailed investigation and discussion were based on styrene but tested on three other vinyl monomers. EXPERIMENTS: The structure of nano-rings is identified through the detailed analysis of small angle X-ray/neutron scattering (SAXS and SANS) data and transmission electron micrographs (TEM), supported by the differential scanning calorimetric (DSC) data before and after polymerization. The investigation covers samples with a styrene-to-lipid ratio ranged varied from 1:50 to 1:10. FINDINGS: The styrene monomers are initially located at both the discoidal planar (long-chain lipid rich) and rim (short-chain lipid rich) regions. During polymerization, they migrate to the more fluid rim regionsection. The formation mechanism involves the interplay of hydrophobic interaction, mismatched miscibility of polystyrene between the ordered and disordered phases, and crystallinity of the long lipid acyl chains. This facile synthesis is proven applicable for several hydrophobic monomers. The well-defined nano-rings greatly enhance the interfacial area and have the potential to be the building blocks for functional materials, if monomers are incorporated with desirable functions, for future applications.


Assuntos
Fosforilcolina , Polímeros , Espalhamento a Baixo Ângulo , Polimerização , Difração de Raios X , Éteres Fosfolipídicos , Estirenos , Bicamadas Lipídicas/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA