RESUMO
Pontoscolex corethrurus is the most widespread earthworm species in tropical and sub-tropical zones and one of the most studied in soil science. Although, ecological interactions of P. corethrurus with its environment are well documented, the taxonomic status of the species remains unclear. In this study, we investigated phylogenetic relationships within the genus Pontoscolex, in particular focusing on morphologically indistinguishable (i.e., cryptic) lineages. A total of 792 specimens collected from 25 different countries and islands all over the world were analyzed using two mitochondrial (COI and 16S rDNA) and two nuclear (internal transcribed spacers 2 and 28S rDNA) markers, and a total of 11 morphological characters both internal and external were investigated in all genetically characterized lineages. A large-scale multilocus sequence data matrix was also obtained for Pontoscolex spp. specimens using the Anchored Hybrid Enrichment (AHE) method. Multilocus phylogenetic and phylogenomic analyses, combined with species delimitation methods; including single locus (mPTP, ABGD) and multilocus (BPP) approaches, revealed congruent results. Four cryptic species were supported within the P. corethrurus species complex, and four potentially new species within the genus Pontoscolex. One widespread lineage (L1), within P. corethrurus complex was observed in the current population of Fritz Müller's garden where P. corethrurus was first described in 1856. Cryptic lineages were observed in sympatry at several localities. This, in combination with observed heteroplasmy in COI gene in one population raises an important question of reproductive isolation between these species.
Assuntos
Oligoquetos/classificação , Animais , Teorema de Bayes , Marcadores Genéticos , Geografia , Haplótipos/genética , Oligoquetos/anatomia & histologia , Filogenia , Especificidade da Espécie , SimpatriaRESUMO
Tropical rainforest soils harbor a considerable diversity of soil fauna that contributes to emissions of N2O. Despite their ecological dominance, there is limited information available about the contribution of epigeal ant mounds to N2O emissions in these tropical soils. This study aimed to determine whether ant mounds contribute to local soil N emissions in the tropical humid rainforest. N2O emission was determined in vitro from individual live ants, ant-processed mound soils, and surrounding reference soils for two trophically distinct and abundant ant species: the leaf-cutting Atta mexicana and omnivorous Solenopsis geminata. The abundance of total bacteria, nitrifiers (AOA and AOB), and denitrifiers (nirK, nirS, and nosZ) was estimated in these soils using quantitative PCR, and their respective mineral N contents determined. There was negligible N2O emission detected from live ant individuals. However, the mound soils of both species emitted significantly greater (3-fold) amount of N2O than their respective surrounding reference soils. This emission increased significantly up to 6-fold in the presence of acetylene, indicating that, in addition to N2O, dinitrogen (N2) is also produced from these mound soils at an equivalent rate (N2O/N2 = 0.57). Functional gene abundance (nitrifiers and denitrifiers) and mineral N pools (ammonium and nitrate) were significantly greater in mound soils than in their respective reference soils. Furthermore, in the light of the measured parameters and their correlation trends, nitrification and denitrification appeared to represent the major N2O-producing microbial processes in ant mound soils. The ant mounds were estimated to contribute from 0.1 to 3.7% of the total N2O emissions of tropical rainforest soils.
Assuntos
Formigas/microbiologia , Óxido Nitroso/análise , Microbiologia do Solo , Solo/química , Animais , Formigas/metabolismo , Bactérias/genética , Bactérias/metabolismo , Desnitrificação/genética , Genes Bacterianos , Nitrificação/genética , Óxido Nitroso/metabolismo , Floresta ÚmidaRESUMO
Water infiltration rates k were measured in mesocosms with soil and "white grubs" of Ancognatha falsa (Arrow) (Coleoptera: Melolonthidae). Three third instars of A. falsa and three adult earthworms Pontoscolex corethrurus were selected, weighted, and introduced into the mesocosms setting three treatments: soil + A. falsa, soil + P. corethrurus, and control (soil without any macroorganism). The experiment had a completely random design with four replicates per treatment (n = 4). The infiltration rates of soil matrix were assessed in each mesocosms with a minidisk tension infiltrometer. Six measurements were made along the experiment. Results showed that larvae of A. falsa promoted a higher water infiltration in the soil, compared to the control. On day 7, k values were similar among treatments, but k values after 28 days and up to 100 days were much higher in the A. falsa treatment (k = 0.00025 cm s(-1)) if compared to control (k = 0.00011 cm s(-1)) and P. corethrurus (k = 0.00008 cm s(-1)) treatments. The k values were significantly higher in the presence of larvae of A. falsa compared to the control and P. corethrurus treatments. The larvae of A. falsa are potential candidates for new assays on soil water infiltration with different tensions to evaluate the role of pores and holes created by the larvae on soils.