Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Magn Reson Med ; 70(4): 1026-37, 2013 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-23165796

RESUMO

PURPOSE: To develop an algorithm for fast and accurate T2 estimation from highly undersampled multi-echo spin-echo data. METHODS: The algorithm combines a model-based reconstruction with a signal decay based on the slice-resolved extended phase graph (SEPG) model with the goal of reconstructing T2 maps from highly undersampled radial multi-echo spin-echo data with indirect echo compensation. To avoid problems associated with the nonlinearity of the SEPG model, principal component decomposition is used to linearize the signal model. The proposed CUrve Reconstruction via principal component-based Linearization with Indirect Echo compensation (CURLIE) algorithm is used to estimate T2 curves from highly undersampled data. T2 maps are obtained by fitting the curves to the SEPG model. RESULTS: Results on phantoms showed T2 biases (1.9% to 18.4%) when indirect echoes are not taken into account. The T2 biases were reduced (< 3.2%) when the CURLIE reconstruction was performed along with SEPG fitting even for high degrees of undersampling (4% sampled). Experiments in vivo for brain, liver, and heart followed the same trend as the phantoms. CONCLUSION: The CURLIE reconstruction combined with SEPG fitting enables accurate T2 estimation from highly undersampled multi-echo spin-echo radial data thus, yielding a fast T2 mapping method without errors caused by indirect echoes.


Assuntos
Artefatos , Encéfalo/anatomia & histologia , Imagem Ecoplanar/métodos , Coração/anatomia & histologia , Aumento da Imagem/métodos , Fígado/anatomia & histologia , Adulto , Algoritmos , Interpretação Estatística de Dados , Humanos , Interpretação de Imagem Assistida por Computador/métodos , Masculino , Reprodutibilidade dos Testes , Tamanho da Amostra , Sensibilidade e Especificidade
2.
Acad Radiol ; 22(2): 139-48, 2015 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-25572926

RESUMO

RATIONALE AND OBJECTIVES: To develop and test an algorithm that outlines the breast boundaries using information from fat and water magnetic resonance images. MATERIALS AND METHODS: Three algorithms were implemented and tested using registered fat and water magnetic resonance images. Two of the segmentation algorithms are simple extensions of the techniques used for contrast-enhanced images: one algorithm uses clustering and local gradient (CLG) analysis and the other algorithm uses a Hessian-based sheetness filter (HSF). The third segmentation algorithm uses k-means++ and dynamic programming (KDP) for finding the breast pixels. All three algorithms separate the left and right breasts using either a fixed region or a morphological method. The performance is quantified using a mutual overlap (Dice) metric and a pectoral muscle boundary error. The algorithms are evaluated against three manual tracers using 266 breast images from 14 female subjects. RESULTS: The KDP algorithm has a mean overlap percentage improvement that is statistically significant relative to the HSF and CLG algorithms. When using a fixed region to remove the tissue between breasts with tracer 1 as a reference, the KDP algorithm has a mean overlap of 0.922 compared to 0.864 (P < .01) for HSF and 0.843 (P < .01) for CLG. The performance of KDP is very similar to tracers 2 (0.926 overlap) and 3 (0.929 overlap). The performance analysis in terms of pectoral muscle boundary error showed that the fraction of the muscle boundary within three pixels of reference tracer 1 is 0.87 using KDP compared to 0.578 for HSF and 0.617 for CLG. Our results show that the performance of the KDP algorithm is independent of breast density. CONCLUSIONS: We developed a new automated segmentation algorithm (KDP) to isolate breast tissue from magnetic resonance fat and water images. KDP outperforms the other techniques that focus on local analysis (CLG and HSF) and yields a performance similar to human tracers.


Assuntos
Tecido Adiposo/patologia , Água Corporal , Neoplasias da Mama/patologia , Interpretação de Imagem Assistida por Computador/métodos , Imageamento por Ressonância Magnética/métodos , Técnica de Subtração , Algoritmos , Mama , Feminino , Humanos , Aumento da Imagem/métodos , Reconhecimento Automatizado de Padrão/métodos , Programação Linear , Reprodutibilidade dos Testes , Sensibilidade e Especificidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA