Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
1.
Mol Biol Evol ; 38(8): 3415-3435, 2021 07 29.
Artigo em Inglês | MEDLINE | ID: mdl-33871658

RESUMO

Aging and cancer are two interrelated processes, with aging being a major risk factor for the development of cancer. Parallel epigenetic alterations have been described for both, although differences, especially within the DNA hypomethylation scenario, have also been recently reported. Although many of these observations arise from the use of mouse models, there is a lack of systematic comparisons of human and mouse epigenetic patterns in the context of disease. However, such comparisons are significant as they allow to establish the extent to which some of the observed similarities or differences arise from pre-existing species-specific epigenetic traits. Here, we have used reduced representation bisulfite sequencing to profile the brain methylomes of young and old, tumoral and nontumoral brain samples from human and mouse. We first characterized the baseline epigenomic patterns of the species and subsequently focused on the DNA methylation alterations associated with cancer and aging. Next, we described the functional genomic and epigenomic context associated with the alterations, and finally, we integrated our data to study interspecies DNA methylation levels at orthologous CpG sites. Globally, we found considerable differences between the characteristics of DNA methylation alterations in cancer and aging in both species. Moreover, we describe robust evidence for the conservation of the specific cancer and aging epigenomic signatures in human and mouse. Our observations point toward the preservation of the functional consequences of these alterations at multiple levels of genomic regulation. Finally, our analyses reveal a role for the genomic context in explaining disease- and species-specific epigenetic traits.


Assuntos
Envelhecimento/genética , Metilação de DNA , Epigênese Genética , Epigenoma , Neoplasias/genética , Animais , Evolução Biológica , Ilhas de CpG , Humanos , Camundongos , Especificidade da Espécie
2.
Mar Drugs ; 19(9)2021 Sep 11.
Artigo em Inglês | MEDLINE | ID: mdl-34564179

RESUMO

Phaeodactylum tricornutum is a rich source of fucoxanthin, a carotenoid with several health benefits. In the present study, high performance countercurrent chromatography (HPCCC) was used to isolate fucoxanthin from an extract of P. tricornutum. A multiple sequential injection HPCCC method was developed combining two elution modes (reverse phase and extrusion). The lower phase of a biphasic solvent system (n-heptane, ethyl acetate, ethanol and water, ratio 5/5/6/3, v/v/v/v) was used as the mobile phase, while the upper phase was the stationary phase. Ten consecutive sample injections (240 mg of extract each) were performed leading to the separation of 38 mg fucoxanthin with purity of 97% and a recovery of 98%. The process throughput was 0.189 g/h, while the efficiency per gram of fucoxanthin was 0.003 g/h. Environmental risk and general process evaluation factors were used for assessment of the developed separation method and compared with existing fucoxanthin liquid-liquid isolation methods. The isolated fucoxanthin retained its well-described ability to induce nuclear translocation of transcription factor FOXO3. Overall, the developed isolation method may represent a useful model to produce biologically active fucoxanthin from diatom biomass.


Assuntos
Diatomáceas/química , Xantofilas/química , Animais , Cromatografia Líquida de Alta Pressão , Distribuição Contracorrente
3.
EMBO Rep ; 19(9)2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-30021836

RESUMO

The NAD+-dependent deacetylase SIRT1 can be oncogenic or tumor suppressive depending on the tissue. Little is known about the role of SIRT1 in non-small cell lung carcinoma (NSCLC), one of the deadliest cancers, that is frequently associated with mutated K-RAS Therefore, we investigated the effect of SIRT1 on K-RAS-driven lung carcinogenesis. We report that SIRT1 protein levels are downregulated by oncogenic K-RAS in a MEK and PI3K-dependent manner in mouse embryo fibroblasts (MEFs), and in human lung adenocarcinoma cell lines. Furthermore, Sirt1 overexpression in mice delays the appearance of K-RasG12V-driven lung adenocarcinomas, reducing the number and size of carcinomas at the time of death and extending survival. Consistently, lower levels of SIRT1 are associated with worse prognosis in human NSCLCs. Mechanistically, analysis of mouse Sirt1-Tg pneumocytes, isolated shortly after K-RasG12V activation, reveals that Sirt1 overexpression alters pathways involved in tumor development: proliferation, apoptosis, or extracellular matrix organization. Our work demonstrates a tumor suppressive role of SIRT1 in the development of K-RAS-driven lung adenocarcinomas in mice and humans, suggesting that the SIRT1-K-RAS axis could be a therapeutic target for NSCLCs.


Assuntos
Adenocarcinoma de Pulmão/metabolismo , Carcinogênese/metabolismo , Carcinoma Pulmonar de Células não Pequenas/metabolismo , Neoplasias Pulmonares/metabolismo , Proteínas Proto-Oncogênicas p21(ras)/metabolismo , Sirtuína 1/metabolismo , Adenocarcinoma de Pulmão/tratamento farmacológico , Adenocarcinoma de Pulmão/patologia , Células Epiteliais Alveolares , Animais , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Carcinoma Pulmonar de Células não Pequenas/patologia , Linhagem Celular Tumoral , Células Cultivadas , Regulação para Baixo , Fibroblastos/metabolismo , Humanos , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/patologia , Camundongos , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Terapia de Alvo Molecular , Mutação , Fosfatidilinositol 3-Quinases/metabolismo , Intervalo Livre de Progressão , Proteínas Proto-Oncogênicas p21(ras)/genética
4.
Genes Dev ; 23(10): 1177-82, 2009 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-19451218

RESUMO

The INK4a/ARF tumor suppressor locus, a key executor of cellular senescence, is regulated by members of the Polycomb group (PcG) of transcriptional repressors. Here we show that signaling from oncogenic RAS overrides PcG-mediated repression of INK4a by activating the H3K27 demethylase JMJD3 and down-regulating the methyltransferase EZH2. In human fibroblasts, JMJD3 activates INK4a, but not ARF, and causes p16(INK4a)-dependent arrest. In mouse embryo fibroblasts, Jmjd3 activates both Ink4a and Arf and elicits a p53-dependent arrest, echoing the effects of RAS in this system. Our findings directly implicate JMJD3 in the regulation of INK4a/ARF during oncogene-induced senescence and suggest that JMJD3 has the capacity to act as a tumor suppressor.


Assuntos
Inibidor p16 de Quinase Dependente de Ciclina/metabolismo , Epigênese Genética/genética , Regulação da Expressão Gênica , Oxirredutases N-Desmetilantes/metabolismo , Proteínas ras/metabolismo , Animais , Senescência Celular , Fibroblastos/citologia , Fibroblastos/metabolismo , Humanos , Histona Desmetilases com o Domínio Jumonji , Camundongos , Transdução de Sinais
5.
Cancer Cell ; 4(2): 111-20, 2003 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-12957286

RESUMO

We have targeted a K-ras allele in mouse embryonic stem (ES) cells to express a K-Ras(V12) oncoprotein along with a marker protein (beta-geo) from a single bicistronic transcript. Expression of this oncogenic allele requires removal of a knocked in STOP transcriptional cassette by Cre recombinase. Primary mouse embryonic fibroblasts expressing this K-ras(V12) allele do not undergo proliferative senescence and proliferate as immortal cells. In mice, expression of K-ras(V12) throughout the body fails to induce unscheduled proliferation or other growth abnormalities for up to eight months. Only a percentage of K-ras(V12)-expressing lung bronchiolo-alveolar cells undergo malignant transformation leading to the formation of multiple adenomas and adenocarcinomas. These results indicate that neoplastic growth induced by an endogenous K-ras oncogene depends upon cellular context.


Assuntos
Transformação Celular Neoplásica , Fibroblastos/patologia , Genes ras/genética , Neoplasias/genética , Neoplasias/patologia , Proteínas Serina-Treonina Quinases , Animais , Divisão Celular , Linhagem Celular Transformada , Senescência Celular , Aberrações Cromossômicas , Inibidor p16 de Quinase Dependente de Ciclina , Fibroblastos/metabolismo , Marcação de Genes , Vetores Genéticos/genética , Sistema de Sinalização das MAP Quinases , Camundongos , Camundongos Transgênicos , Proteína Oncogênica p21(ras)/genética , Proteína Oncogênica p21(ras)/metabolismo , Proteínas Proto-Oncogênicas/genética , Proteínas Proto-Oncogênicas/metabolismo , Proteínas Proto-Oncogênicas c-akt , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Células-Tronco/patologia , Taxa de Sobrevida , Proteína Supressora de Tumor p14ARF/genética , Proteína Supressora de Tumor p14ARF/metabolismo , Proteína Supressora de Tumor p53/genética , Proteína Supressora de Tumor p53/metabolismo
6.
Nat Commun ; 13(1): 5677, 2022 09 27.
Artigo em Inglês | MEDLINE | ID: mdl-36167809

RESUMO

Fasting exerts beneficial effects in mice and humans, including protection from chemotherapy toxicity. To explore the involved mechanisms, we collect blood from humans and mice before and after 36 or 24 hours of fasting, respectively, and measure lipid composition of erythrocyte membranes, circulating micro RNAs (miRNAs), and RNA expression at peripheral blood mononuclear cells (PBMCs). Fasting coordinately affects the proportion of polyunsaturated versus saturated and monounsaturated fatty acids at the erythrocyte membrane; and reduces the expression of insulin signaling-related genes in PBMCs. When fasted for 24 hours before and 24 hours after administration of oxaliplatin or doxorubicin, mice show a strong protection from toxicity in several tissues. Erythrocyte membrane lipids and PBMC gene expression define two separate groups of individuals that accurately predict a differential protection from chemotherapy toxicity, with important clinical implications. Our results reveal a mechanism of fasting associated with lipid homeostasis, and provide biomarkers of fasting to predict fasting-mediated protection from chemotherapy toxicity.


Assuntos
Jejum , MicroRNAs , Animais , Biomarcadores , Doxorrubicina/toxicidade , Jejum/metabolismo , Ácidos Graxos/metabolismo , Ácidos Graxos Monoinsaturados , Homeostase , Humanos , Insulina , Leucócitos Mononucleares/metabolismo , Camundongos , Oxaliplatina
7.
Nature ; 436(7051): 642, 2005 Aug 04.
Artigo em Inglês | MEDLINE | ID: mdl-16079833

RESUMO

Oncogene-induced senescence is a cellular response that may be crucial for protection against cancer development, but its investigation has so far been restricted to cultured cells that have been manipulated to overexpress an oncogene. Here we analyse tumours initiated by an endogenous oncogene, ras, and show that senescent cells exist in premalignant tumours but not in malignant ones. Senescence is therefore a defining feature of premalignant tumours that could prove valuable in the diagnosis and prognosis of cancer.


Assuntos
Senescência Celular , Neoplasias Pulmonares/patologia , Lesões Pré-Cancerosas/patologia , Adenocarcinoma/genética , Adenocarcinoma/metabolismo , Adenocarcinoma/patologia , Alelos , Animais , Biomarcadores Tumorais/análise , Biomarcadores Tumorais/metabolismo , Transformação Celular Neoplásica/genética , Transformação Celular Neoplásica/metabolismo , Transformação Celular Neoplásica/patologia , Inibidor p16 de Quinase Dependente de Ciclina/metabolismo , Modelos Animais de Doenças , Progressão da Doença , Regulação Neoplásica da Expressão Gênica , Genes ras/genética , Heterocromatina/genética , Heterocromatina/metabolismo , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/metabolismo , Camundongos , Camundongos Transgênicos , Análise de Sequência com Séries de Oligonucleotídeos , Lesões Pré-Cancerosas/genética , Lesões Pré-Cancerosas/metabolismo , beta-Galactosidase/genética , beta-Galactosidase/metabolismo
8.
Aging (Albany NY) ; 12(12): 11337-11348, 2020 06 25.
Artigo em Inglês | MEDLINE | ID: mdl-32584785

RESUMO

Senescent cells accumulate with obesity in the white adipose tissue of mice and humans. These senescent cells enhance the pro-inflammatory environment that, with time, contributes to the onset of glucose intolerance and type 2 diabetes. Glucose intolerance in mouse models of obesity has been successfully reversed by the elimination of senescent cells with the senolytic compounds navitoclax or the combination of dasatinib and quercetin (D/Q). In this work, we generated obese mice by high-fat diet feeding, and treated them with five consecutive cycles of navitoclax or D/Q during 16 weeks. We observed an efficient reduction in the white adipose tissue of the senescence markers senescence-associated ß-galactosidase activity, Cdkn2a-p16 and Cdkn2a-p19 at the end of the 5 cycles. Mice treated with both navitoclax and D/Q showed an improvement of their insulin sensitivity and glucose tolerance during a short period of time (cycles 3 and 4), that disappeared at the fifth cycle. Also, these mice tended to increase the expression at their adipose tissue of the adipogenic genes Pparg and, Cebpa, as well as their plasma adiponectin levels. Together, our work shows that two different senolytic treatments, acting through independent pathways, are transiently effective in the treatment of obesity-induced metabolic disorders.


Assuntos
Compostos de Anilina/administração & dosagem , Senescência Celular/efeitos dos fármacos , Dasatinibe/administração & dosagem , Obesidade/tratamento farmacológico , Quercetina/administração & dosagem , Sulfonamidas/administração & dosagem , Adipogenia/efeitos dos fármacos , Adiponectina/sangue , Adiponectina/metabolismo , Tecido Adiposo Branco/citologia , Tecido Adiposo Branco/efeitos dos fármacos , Tecido Adiposo Branco/metabolismo , Animais , Proteínas Estimuladoras de Ligação a CCAAT/metabolismo , Senescência Celular/fisiologia , Dieta Hiperlipídica/efeitos adversos , Modelos Animais de Doenças , Esquema de Medicação , Combinação de Medicamentos , Intolerância à Glucose/sangue , Intolerância à Glucose/tratamento farmacológico , Intolerância à Glucose/etiologia , Intolerância à Glucose/metabolismo , Humanos , Resistência à Insulina , Masculino , Camundongos , Camundongos Obesos , Obesidade/sangue , Obesidade/etiologia , Obesidade/metabolismo , PPAR gama/metabolismo
10.
Methods Mol Biol ; 1890: 151-161, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30414152

RESUMO

FOXO proteins are transcription factors with important roles in the regulation of the expression of genes involved in cell growth, proliferation, differentiation, and longevity. FOXO proteins are active in the nucleus but, upon post-translational modification they form a docking site for 14-3-3 proteins and are translocated to the cytoplasm where they are inactive.We make use of this regulatory mechanism of FOXO proteins to develop an image-based high-throughput screening platform to detect compounds that regulate FOXO3 subcellular localization. This system has proven a powerful tool to isolate inhibitors of proteins upstream of FOXO, such as PI3K inhibitors.


Assuntos
Descoberta de Drogas/métodos , Fatores de Transcrição Forkhead/genética , Ensaios de Triagem em Larga Escala , Ativação Transcricional/efeitos dos fármacos , Animais , Linhagem Celular Tumoral , Análise de Dados , Imunofluorescência , Fatores de Transcrição Forkhead/metabolismo , Genes Reporter , Humanos , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/metabolismo , Bibliotecas de Moléculas Pequenas
12.
Nat Commun ; 10(1): 4731, 2019 10 21.
Artigo em Inglês | MEDLINE | ID: mdl-31636264

RESUMO

Compounds with specific cytotoxic activity in senescent cells, or senolytics, support the causal involvement of senescence in aging and offer therapeutic interventions. Here we report the identification of Cardiac Glycosides (CGs) as a family of compounds with senolytic activity. CGs, by targeting the Na+/K+ATPase pump, cause a disbalanced electrochemical gradient within the cell causing depolarization and acidification. Senescent cells present a slightly depolarized plasma membrane and higher concentrations of H+, making them more susceptible to the action of CGs. These vulnerabilities can be exploited for therapeutic purposes as evidenced by the in vivo eradication of tumors xenografted in mice after treatment with the combination of a senogenic and a senolytic drug. The senolytic effect of CGs is also effective in the elimination of senescence-induced lung fibrosis. This experimental approach allows the identification of compounds with senolytic activity that could potentially be used to develop effective treatments against age-related diseases.


Assuntos
Apoptose/efeitos dos fármacos , Glicosídeos Cardíacos/farmacologia , Senescência Celular/efeitos dos fármacos , Condrócitos/efeitos dos fármacos , Fibroblastos/efeitos dos fármacos , Células A549 , Animais , Antibióticos Antineoplásicos/farmacologia , Bleomicina/farmacologia , Neoplasias da Mama , Linhagem Celular Tumoral , Membrana Celular/efeitos dos fármacos , Digoxina/farmacologia , Feminino , Humanos , Concentração de Íons de Hidrogênio/efeitos dos fármacos , Camundongos , Osteoartrite , Ouabaína/farmacologia , Proscilaridina/farmacologia , Fibrose Pulmonar , Ensaios Antitumorais Modelo de Xenoenxerto
14.
Mutat Res ; 594(1-2): 78-85, 2006 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-16280139

RESUMO

Frequent chromosome 3 losses have been described in several tumors types, which strongly suggest the presence of one or several tumor suppressor genes. Recently, a novel candidate tumor suppressor gene termed Ris-1 (for Ras-induced senescence 1) has been identified at chromosomal position 3p21.3. Ris-1 has been proposed to participate in anti-tumor responses that resemble cellular senescence and that are elicited by oncogenes such as Ras. To analyze the role of Ris-1 as a putative tumor suppressor gene in human breast cancer, we have performed a real-time quantitative analysis of its mRNA expression in 60 patients. Moreover, we carried out a first approach to evaluate the most common inactivation mechanism that can affect expression levels of tumor suppressor genes (mutation, promoter hypermethylation and allelic losses). Furthermore, a correlation study between expression as well as inactivating mechanisms of Ris-1 and several clinico-pathological parameters of the tumors was designed, with the objective of appraising the prognostic value of Ris-1 status. Decreased expression of Ris-1 was observed in 23% of the cases and overexpressed Ris-1 was detected in 15% of the primary breast tumors. Our data showed high frequency of LOH (30%) at one of the markers used. Nevertheless, a polymorphism related with the expression levels was described. Statistically significant correlations were found between decreased Ris-1 expression and negative progesterone receptors, as well as between overexpressing Ris-1 tumors and high histological grade. Despite all these data, we conclude that the suggested role of Ris-1 as tumor suppressor gene is not evident, at least in breast cancer. Future and larger series studies in different tumor types are necessary to clarify Ris-1 function in human cancer.


Assuntos
Neoplasias da Mama/genética , Proteínas Supressoras de Tumor/genética , Alelos , Neoplasias da Mama/fisiopatologia , Metilação de DNA , Epigênese Genética , Feminino , Genótipo , Humanos , Proteínas de Membrana , Reação em Cadeia da Polimerase , Polimorfismo Conformacional de Fita Simples , Regiões Promotoras Genéticas , Estudos Prospectivos , Proteínas Supressoras de Tumor/biossíntese
15.
Exp Cell Res ; 273(2): 127-37, 2002 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-11822868

RESUMO

Normal cells display protective responses against oncogenes. Notably, oncogenic Ras triggers an irreversible proliferation arrest that is reminiscent of replicative senescence and that is considered a relevant tumor-suppressor mechanism. Here, we have used microarrayed filters to identify genes specifically upregulated in Ras-senescent human fibroblasts. Among the initial set of genes selected from the microarrays, we found the cell-cycle inhibitor p21(Cip1/Waf1), thus validating the potency of the screening to identify markers and mediators of Ras-senescence. A group of six genes, formed by those more highly upregulated during Ras-senescence, was analyzed in further detail to evaluate their specificity. In particular, we examined their expression in cells overexpressing Ras but rendered resistant to Ras-senescence by the viral oncoprotein E1a; also, we have studied their expression during replicative senescence, organismal aging, H(2)O(2)-induced senescence, and DNA damage. In this manner, we have identified a novel gene, RIS1 (for Ras-induced senescence 1), which is not upregulated in association to any of the above-mentioned processes, but exclusively during Ras-senescence. Furthermore, RIS1 is also upregulated by the transcriptional factor Ets2, which is a known mediator of Ras-induced senescence. Interestingly, RIS1 is located at chromosomal position 3p21.3 and, more specifically, it is included in a short segment of just 1 Mb previously defined by other investigators for its tumor-suppressor activity. In summary, we report the identification of a novel gene, RIS1, as a highly specific marker of Ras-induced senescence and a candidate tumor-suppressor gene.


Assuntos
Proteínas de Ligação a DNA , Genes Supressores de Tumor , Proteínas Repressoras , Fatores de Transcrição , Ativação Transcricional , Proteínas Supressoras de Tumor/genética , Proteínas ras/metabolismo , Proteínas E1A de Adenovirus/metabolismo , Proteínas E1A de Adenovirus/farmacologia , Adolescente , Adulto , Idoso , Idoso de 80 Anos ou mais , Divisão Celular , Linhagem Celular , Senescência Celular , Criança , Dano ao DNA , Feminino , Fibroblastos/citologia , Fibroblastos/efeitos dos fármacos , Humanos , Peróxido de Hidrogênio/farmacologia , Proteínas de Membrana , Pessoa de Meia-Idade , Proteína Proto-Oncogênica c-ets-2 , Proteínas Proto-Oncogênicas/metabolismo , Transativadores/metabolismo , Regulação para Cima , Proteínas ras/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA