Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Am Soc Nephrol ; 28(2): 479-493, 2017 02.
Artigo em Inglês | MEDLINE | ID: mdl-27444565

RESUMO

AKI leads to tubular injury and interstitial inflammation that must be controlled to avoid the development of fibrosis. We hypothesized that microRNAs are involved in the regulation of the balance between lesion formation and adaptive repair. We found that, under proinflammatory conditions, microRNA-146a (miR-146a) is transcriptionally upregulated by ligands of IL-1 receptor/Toll-like receptor family members via the activation of NF-κB in cultured renal proximal tubular cells. In vivo, more severe renal ischemia-reperfusion injury (IRI) associated with increased expression of miR-146a in both allografts and urine of human kidney transplant recipients, and unilateral IRI in mice induced miR-146a expression in injured kidneys. After unilateral IRI, miR-146a-/- mice exhibited more extensive tubular injury, inflammatory infiltrates, and fibrosis than wild-type mice. In vitro, overexpression or downregulation of miR-146a diminished or enhanced, respectively, IL-1 receptor-associated kinase 1 expression and induced similar effects on C-X-C motif ligand 8 (CXCL8)/CXCL1 expression by injured tubular cells. Moreover, inhibition of CXCL8/CXCL1 signaling prevented the development of inflammation and fibrosis after IRI in miR-146a-/- mice. In conclusion, these results indicate that miR-146a is a key mediator of the renal tubular response to IRI that limits the consequences of inflammation, a key process in the development of AKI and CKD.


Assuntos
Injúria Renal Aguda/genética , Interleucina-8/fisiologia , MicroRNAs/fisiologia , Injúria Renal Aguda/etiologia , Animais , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Traumatismo por Reperfusão
2.
JCI Insight ; 5(9)2020 05 07.
Artigo em Inglês | MEDLINE | ID: mdl-32376805

RESUMO

The loss of functional nephrons after kidney injury triggers the compensatory growth of the remaining ones to allow functional adaptation. However, in some cases, these compensatory events activate signaling pathways that lead to pathological alterations and chronic kidney disease. Little is known about the identity of these pathways and how they lead to the development of renal lesions. Here, we combined mouse strains that differently react to nephron reduction with molecular and temporal genome-wide transcriptome studies to elucidate the molecular mechanisms involved in these events. We demonstrated that nephron reduction led to 2 waves of cell proliferation: the first one occurred during the compensatory growth regardless of the genetic background, whereas the second one occurred, after a quiescent phase, exclusively in the sensitive strain and accompanied the development of renal lesions. Similarly, clustering by coinertia analysis revealed the existence of 2 waves of gene expression. Interestingly, we identified type I interferon (IFN) response as an early (first-wave) and specific signature of the sensitive (FVB/N) mice. Activation of type I IFN response was associated with G1/S cell cycle arrest, which correlated with p21 nuclear translocation. Remarkably, the transient induction of type I IFN response by poly(I:C) injections during the compensatory growth resulted in renal lesions in otherwise-resistant C57BL6 mice. Collectively, these results suggest that the early molecular and cellular events occurring after nephron reduction determine the risk of developing late renal lesions and point to type I IFN response as a crucial event of the deterioration process.


Assuntos
Rim , Néfrons , Insuficiência Renal Crônica , Transdução de Sinais , Animais , Proliferação de Células , Progressão da Doença , Suscetibilidade a Doenças , Feminino , Pontos de Checagem da Fase G1 do Ciclo Celular , Interferon Tipo I/metabolismo , Rim/metabolismo , Rim/patologia , Camundongos , Camundongos Endogâmicos C57BL , Néfrons/metabolismo , Néfrons/patologia , Insuficiência Renal Crônica/metabolismo , Insuficiência Renal Crônica/patologia
3.
J Clin Endocrinol Metab ; 103(6): 2319-2328, 2018 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-29618028

RESUMO

Context: The bone-derived hormone fibroblast growth factor (FGF) 23 controls phosphate homeostasis and urinary phosphate excretion. FGF23 plasma levels increase in the early stage of renal insufficiency to prevent hyperphosphatemia. Recent evidence suggests that this increase has effects on cardiac and immune cells that compromise patients' health. Patients with autosomal dominant polycystic kidney disease (ADPKD) have been reported to have higher FGF23 concentrations than other patients with similar renal function. The significance of this finding has remained unknown. Methods and Results: Analyzing the FGF23 plasma levels in 434 patients with ADPKD and 355 control subjects with a measured glomerular filtration rate (mGFR) between 60 and 120 mL/min per 1.73 m2, we confirmed that patients with ADPKD had higher FGF23 plasma concentrations than controls. Remarkably, this difference did not translate into renal phosphate leakage. Using different assays for FGF23, we found that this discrepancy was explained by a predominant increase in the cleaved C-terminal fragment of FGF23, which lacks phosphaturic activity. We found that FGF23 plasma concentration independently correlated with the severity of cystic liver disease in ADPKD. We observed that, in contrast to control liver tissues, the cystic liver from patients with ADPKD markedly expressed FGF23 messenger RNA and protein. In line with this finding, the surgical reduction of polycystic liver mass was associated with a decrease in FGF23 plasma levels independently of any modification in mGFR, phosphate, or iron status. Conclusion: Our findings demonstrate that severely polycystic livers produce FGF23 and increase levels of circulating FGF23 in patients with ADPKD.


Assuntos
Fatores de Crescimento de Fibroblastos/sangue , Fígado/metabolismo , Rim Policístico Autossômico Dominante/sangue , Adulto , Estudos de Casos e Controles , Feminino , Fator de Crescimento de Fibroblastos 23 , Taxa de Filtração Glomerular , Humanos , Rim/fisiopatologia , Masculino , Pessoa de Meia-Idade , Rim Policístico Autossômico Dominante/fisiopatologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA