Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
1.
Circ Res ; 120(1): 110-119, 2017 Jan 06.
Artigo em Inglês | MEDLINE | ID: mdl-27729468

RESUMO

RATIONALE: Junctional membrane complexes (JMCs) in myocytes are critical microdomains, in which excitation-contraction coupling occurs. Structural and functional disruption of JMCs underlies contractile dysfunction in failing hearts. However, the role of newly identified JMC protein SPEG (striated muscle preferentially expressed protein kinase) remains unclear. OBJECTIVE: To determine the role of SPEG in healthy and failing adult hearts. METHODS AND RESULTS: Proteomic analysis of immunoprecipitated JMC proteins ryanodine receptor type 2 and junctophilin-2 (JPH2) followed by mass spectrometry identified the serine-threonine kinase SPEG as the only novel binding partner for both proteins. Real-time polymerase chain reaction revealed the downregulation of SPEG mRNA levels in failing human hearts. A novel cardiac myocyte-specific Speg conditional knockout (MCM-Spegfl/fl) model revealed that adult-onset SPEG deficiency results in heart failure (HF). Calcium (Ca2+) and transverse-tubule imaging of ventricular myocytes from MCM-Spegfl/fl mice post HF revealed both increased sarcoplasmic reticulum Ca2+ spark frequency and disrupted JMC integrity. Additional studies revealed that transverse-tubule disruption precedes the development of HF development in MCM-Spegfl/fl mice. Although total JPH2 levels were unaltered, JPH2 phosphorylation levels were found to be reduced in MCM-Spegfl/fl mice, suggesting that loss of SPEG phosphorylation of JPH2 led to transverse-tubule disruption, a precursor of HF development in SPEG-deficient mice. CONCLUSIONS: The novel JMC protein SPEG is downregulated in human failing hearts. Acute loss of SPEG in mouse hearts causes JPH2 dephosphorylation and transverse-tubule loss associated with downstream Ca2+ mishandling leading to HF. Our study suggests that SPEG could be a novel target for the treatment of HF.


Assuntos
Insuficiência Cardíaca/metabolismo , Proteínas de Membrana/metabolismo , Proteínas Musculares/biossíntese , Proteínas Musculares/metabolismo , Miócitos Cardíacos/metabolismo , Quinase de Cadeia Leve de Miosina/biossíntese , Proteômica/métodos , Adulto , Idoso , Animais , Feminino , Células HEK293 , Insuficiência Cardíaca/genética , Insuficiência Cardíaca/patologia , Humanos , Masculino , Proteínas de Membrana/genética , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Pessoa de Meia-Idade , Proteínas Musculares/genética , Quinase de Cadeia Leve de Miosina/genética
2.
Am J Physiol Heart Circ Physiol ; 308(7): H749-58, 2015 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-25617357

RESUMO

AMP kinase (AMPK) plays an important role in the regulation of energy metabolism in cardiac cells. Furthermore, activation of AMPK protects the heart from myocardial infarction and heart failure. The present study examines whether or not AMPK affects the peroxisome proliferator-activated receptor-α (PPARα)/mitochondria pathway in response to acute oxidative stress in cultured cardiomyocytes. Cultured H9c2 rat embryonic cardioblasts were exposed to H2O2-induced acute oxidative stress in the presence or absence of metformin, compound C (AMPK inhibitor), GW6471 (PPARα inhibitor), or A-769662 (AMPK activator). Results showed that AMPK activation by metformin reverted oxidative stress-induced inactivation of AMPK and prevented oxidative stress-induced cell death. In addition, metformin attenuated reactive oxygen species generation and depolarization of the inner mitochondrial membrane. The antioxidative effects of metformin were associated with the prevention of mitochondrial DNA damage in cardiomyocytes. Coimmunoprecipitation studies revealed that metformin abolished oxidative stress-induced physical interactions between PPARα and cyclophilin D (CypD), and the abolishment of these interactions was associated with inhibition of permeability transition pore formation. The beneficial effects of metformin were not due to acetylation or phosphorylation of PPARα in response to oxidative stress. In conclusion, this study demonstrates that the protective effects of metformin-induced AMPK activation against oxidative stress converge on mitochondria and are mediated, at least in part, through the dissociation of PPARα-CypD interactions, independent of phosphorylation and acetylation of PPARα and CypD.


Assuntos
Adenilato Quinase/metabolismo , Antioxidantes/farmacologia , Ciclofilinas/metabolismo , Ativadores de Enzimas/farmacologia , Metformina/farmacologia , Miócitos Cardíacos/efeitos dos fármacos , Estresse Oxidativo/efeitos dos fármacos , PPAR alfa/metabolismo , Adenilato Quinase/antagonistas & inibidores , Animais , Compostos de Bifenilo , Morte Celular/efeitos dos fármacos , Linhagem Celular , Relação Dose-Resposta a Droga , Ativação Enzimática , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Mitocôndrias Cardíacas/efeitos dos fármacos , Mitocôndrias Cardíacas/enzimologia , Proteínas de Transporte da Membrana Mitocondrial/metabolismo , Poro de Transição de Permeabilidade Mitocondrial , Miócitos Cardíacos/enzimologia , Miócitos Cardíacos/patologia , Oxidantes/farmacologia , PPAR alfa/antagonistas & inibidores , Ligação Proteica , Inibidores de Proteínas Quinases/farmacologia , Pironas/farmacologia , Ratos , Espécies Reativas de Oxigênio/metabolismo , Transdução de Sinais/efeitos dos fármacos , Tiofenos/farmacologia
3.
J Cell Mol Med ; 18(4): 709-20, 2014 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-24444314

RESUMO

AMP-kinase (AMPK) activation reduces cardiac hypertrophy, although underlying molecular mechanisms remain unclear. In this study, we elucidated the anti-hypertrophic action of metformin, specifically, the role of the AMPK/eNOS/p53 pathway. H9c2 rat cardiomyocytes were treated with angiotensin II (AngII) for 24 hrs in the presence or absence of metformin (AMPK agonist), losartan [AngII type 1 receptor (AT1R) blocker], Nω-nitro-L-arginine methyl ester (L-NAME, pan-NOS inhibitor), splitomicin (SIRT1 inhibitor) or pifithrin-α (p53 inhibitor). Results showed that treatment with metformin significantly attenuated AngII-induced cell hypertrophy and death. Metformin attenuated AngII-induced activation (cleavage) of caspase 3, Bcl-2 down-regulation and p53 up-regulation. It also reduced AngII-induced AT1R up-regulation by 30% (P < 0.05) and enhanced AMPK phosphorylation by 99% (P < 0.01) and P-eNOS levels by 3.3-fold (P < 0.01). Likewise, losartan reduced AT1R up-regulation and enhanced AMPK phosphorylation by 54% (P < 0.05). The AMPK inhibitor, compound C, prevented AT1R down-regulation, indicating that metformin mediated its effects via AMPK activation. Beneficial effects of metformin and losartan converged on mitochondria that demonstrated high membrane potential (Δψm ) and low permeability transition pore opening. Thus, this study demonstrates that the anti-hypertrophic effects of metformin are associated with AMPK-induced AT1R down-regulation and prevention of mitochondrial dysfunction through the SIRT1/eNOS/p53 pathway.


Assuntos
Proteínas Quinases Ativadas por AMP/metabolismo , Angiotensina II/administração & dosagem , Cardiomegalia/metabolismo , Mitocôndrias/metabolismo , Miócitos Cardíacos/metabolismo , Proteínas Quinases Ativadas por AMP/biossíntese , Bloqueadores do Receptor Tipo 1 de Angiotensina II/administração & dosagem , Animais , Cardiomegalia/tratamento farmacológico , Cardiomegalia/patologia , Regulação da Expressão Gênica/efeitos dos fármacos , Losartan/administração & dosagem , Metformina/administração & dosagem , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/patologia , Miócitos Cardíacos/efeitos dos fármacos , Miócitos Cardíacos/patologia , Óxido Nítrico Sintase Tipo III/metabolismo , Ratos , Receptor Tipo 1 de Angiotensina/biossíntese , Transdução de Sinais , Sirtuína 1/metabolismo , Proteína Supressora de Tumor p53/metabolismo
4.
Cell Physiol Biochem ; 29(5-6): 841-50, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22613984

RESUMO

BACKGROUND: In addition to hypertension control, direct renin inhibition has been shown to exert direct beneficial effects on the heart in post-infarction cardiac remodeling. This study elucidates the possible contribution of mitochondria to the anti-hypertrophic effects of the direct renin inhibitor aliskiren in post-infarction heart failure complicated with diabetes in rats. METHODS: Diabetes was induced in male Sprague-Dawley rats by a single injection of streptozotocin (IP, 65 mg/kg body weight). After 7 days, the animals were randomly assigned to 4 groups: sham, heart failure, sham+aliskiren, and heart failure+aliskiren. Post-infarction HF was induced by coronary artery ligation for 4 weeks. RESULTS: showed that heart failure reduced ejection fraction and cardiac output by 41% (P<0.01) and 42% (P<0.05), respectively, compared to sham-operated hearts. Cardiac dysfunction was associated with suppressed state 3 respiration rates and respiratory control index in mitochondria, and increased mitochondrial permeability transition pore (PTP) opening. In addition, heart failure reduced expression of the major mitochondrial sirtuin, SIRT3 and increased acetylation of cyclophilin D, a regulatory component of the PTP. Aliskiren significantly improved cardiac function and abrogated mitochondrial perturbations. CONCLUSION: Our results demonstrate that aliskiren attenuates post-infarction remodeling which is associated with its beneficial effects on mitochondria.


Assuntos
Diabetes Mellitus Experimental/fisiopatologia , Insuficiência Cardíaca/fisiopatologia , Mitocôndrias Cardíacas/fisiologia , Infarto do Miocárdio/complicações , Renina/antagonistas & inibidores , Amidas/uso terapêutico , Animais , Western Blotting , Ecocardiografia , Eletroforese em Gel de Poliacrilamida , Fumaratos/uso terapêutico , Insuficiência Cardíaca/diagnóstico por imagem , Insuficiência Cardíaca/tratamento farmacológico , Insuficiência Cardíaca/etiologia , Masculino , Ratos , Ratos Sprague-Dawley , Reação em Cadeia da Polimerase Via Transcriptase Reversa
5.
Int J Mol Sci ; 13(6): 7694-7709, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22837722

RESUMO

Metformin, an anti-diabetic drug, exerts cardioprotection against ischemia-reperfusion (IR) through the activation of AMPK. However, the molecular mechanisms underlying these beneficial effects remain elusive. In this study, we examined the role of PPARα in mediating cardioprotective effects of metformin on mitochondria. Hearts of male Sprague-Dawley rats perfused by Langendorff were subjected to IR in the presence or absence of metformin and the PPARß inhibitor, GW6471. IR reduced cardiac function and compromised the structural integrity of cardiac cells evidenced by increased LDH release from the hearts. In addition, IR induced mitochondrial dysfunction as evidenced by reduced respiration and increased mitochondrial permeability transition pore (PTP) opening. However, metformin-treated hearts demonstrated improved post-ischemic recovery of cardiac function and reduced cell death that were associated with increased state 3 respiration at complexes I and II (by 27% and 32%, respectively, both p < 0.05) and decreased PTP opening (by 27%, p < 0.05) compared to untreated hearts. The protective effects of metformin on cardiac function and mitochondria were blocked by GW6471. Thus, our results demonstrate that inhibition of PPARα attenuates the beneficial effects of metformin on mitochondria in acute IR.


Assuntos
Hipoglicemiantes/farmacologia , Metformina/farmacologia , Mitocôndrias Cardíacas/metabolismo , Traumatismo por Reperfusão Miocárdica/metabolismo , Miócitos Cardíacos/metabolismo , PPAR alfa/metabolismo , Animais , Complexo I de Transporte de Elétrons/metabolismo , Complexo II de Transporte de Elétrons/metabolismo , L-Lactato Desidrogenase/metabolismo , Masculino , Mitocôndrias Cardíacas/patologia , Traumatismo por Reperfusão Miocárdica/patologia , Oxazóis/farmacologia , PPAR alfa/antagonistas & inibidores , Ratos , Ratos Sprague-Dawley , Tirosina/análogos & derivados , Tirosina/farmacologia
6.
Cell Physiol Biochem ; 27(3-4): 179-90, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-21471706

RESUMO

Cardiovascular diseases and cancer continue to be major causes of death worldwide, and despite intensive research only modest progress has been reached in reducing the morbidity and mortality of these awful diseases. Mitochondria are broadly accepted as the key organelles that play a crucial role in cell life and death. They provide cells with ATP produced via oxidative phosphorylation under physiological conditions, and initiate cell death through both apoptosis and necrosis in response to severe stress. Oxidative stress accompanied by calcium overload and ATP depletion induces the mitochondrial permeability transition (mPT) with formation of pathological, non-specific mPT pores (mPTP) in the mitochondrial inner membrane. Opening of the mPTP with a high conductance results in matrix swelling ultimately inducing rupture of the mitochondrial outer membrane and releasing pro-apoptotic proteins into the cytoplasm. The ATP level is the determining factor in deciding whether cells die through apoptosis or necrosis. Cardiac cells undergoing ischemia followed by reperfusion (IR) possess exactly the same conditions mentioned above to induce mPTP opening. Due to its critical role in cell death, inhibition of mPTP opening has been accepted as a major therapeutic approach to protect the heart against IR. In contrast to cardiac IR, cancer cells exhibit less sensitivity to pore opening which can be in part explained by increased expression of mPTP compounds/modulators and metabolic remodeling. Since the main goal of chemotherapy is to provoke apoptosis, mPT induction may represent an attractive approach for the development of new cancer therapeutics to induce mitochondria-mediated cell death and prevent cell differentiation in carcinogenesis. This review focuses on the role of the mPTP in cardiac IR and cancer, and pharmacological agents to prevent or initiate mPT-mediated cell death, respectively in these diseases.


Assuntos
Mitocôndrias/metabolismo , Proteínas de Transporte da Membrana Mitocondrial/metabolismo , Traumatismo por Reperfusão Miocárdica/metabolismo , Neoplasias/metabolismo , Humanos , Proteínas de Transporte da Membrana Mitocondrial/antagonistas & inibidores , Poro de Transição de Permeabilidade Mitocondrial , Traumatismo por Reperfusão Miocárdica/tratamento farmacológico , Neoplasias/tratamento farmacológico
7.
JACC Basic Transl Sci ; 2(1): 56-67, 2017 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-28393127

RESUMO

BACKGROUND: Hypertrophic cardiomyopathy (HCM), defined as asymmetric left ventricular hypertrophy, is a leading cause of cardiac death in the young. Perturbations in calcium (Ca2+) handling proteins have been implicated in the pathogenesis of HCM. JPH2-encoded junctophilin 2 is a major component of the junctional membrane complex, the subcellular microdomain involved in excitation-contraction coupling. We hypothesized that a novel JPH2 mutation identified in patients with HCM is causally linked to HCM, and alters intracellular Ca2+ signaling in a pro-hypertrophic manner. OBJECTIVES: To determine using a transgenic mouse model whether a JPH2 mutation found in a HCM patient is responsible for disease development. METHODS: Genetic interrogation of a large cohort of HCM cases was conducted for all coding exons of JPH2. Pseudo-knock-in (PKI) mice containing a novel JPH2 variant were subjected to echocardiography, cardiac MRI, hemodynamic analysis, and histology. RESULTS: A novel JPH2 mutation, A405S, was identified in a genotype-negative proband with significant basal septal hypertrophy. Although initially underappreciated by traditional echocardiographic imaging, PKI mice with this JPH2 mutation (residue A399S in mice) were found to exhibit similar basal hypertrophy using a newly developed echo imaging plane, and this was confirmed using cardiac MRI. Histological analysis demonstrated cardiomyocyte hypertrophy and disarray consistent with HCM. CONCLUSIONS: Variant A405S is a novel HCM-associated mutation in JPH2 found in a proband negative for mutations in the canonical HCM-associated genes. Studies in the analogous mouse model demonstrated for the first time a causal link between a JPH2 defect and HCM. Moreover, novel imaging approaches identified subvalvular septal hypertrophy, specific findings also reported in the human JPH2 mutation carrier.

8.
PPAR Res ; 2016: 9282087, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27051413

RESUMO

Activated AMPK protects the heart from cardiac ischemia-reperfusion (IR) injury and is associated with inhibition of mitochondrial permeability transition pore (PTP) opening. On the other hand, pharmacological inhibition of the PTP reduces infarct size and improves cardiac function. However, it is unclear whether beneficial effects of AMPK are mediated through the PTP and, if they are not, whether simultaneous activation of AMPK and inhibition of the PTP exert synergistic protective effects against cardiac IR injury. Here, we examined the effects of the AMPK activator, A-769662 in combination with the PTP inhibitor, sanglifehrin A (SfA) on in vivo cardiac IR. Cardiac dysfunction following IR injury was associated with decreased activity of the mitochondrial electron transport chain (ETC) and increased mitochondrial ROS and PTP opening. Administration of A-769662 or SfA individually upon reperfusion improved cardiac function, reduced infarction size, and inhibited ROS production and PTP opening. However, simultaneous administration of SfA and A-769662 did not provide synergistic improvement of postischemic recovery of cardiac and mitochondrial function, though both compounds disrupted IR-induced interaction between PPARα and CyP-D. In conclusion, A-769662 or SfA prevents PPARα interaction with CyP-D, improving cardiac outcomes and increasing mitochondrial function, and simultaneous administration of the drugs does not provide synergistic effects.

9.
Int J Cardiol ; 225: 371-380, 2016 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-27760414

RESUMO

BACKGROUND: Junctophilin-2 (JPH2) is the primary structural protein for the coupling of transverse (T)-tubule associated cardiac L-type Ca channels and type-2 ryanodine receptors on the sarcoplasmic reticulum within junctional membrane complexes (JMCs) in cardiomyocytes. Effective signaling between these channels ensures adequate Ca-induced Ca release required for normal cardiac contractility. Disruption of JMC subcellular domains, a common feature of failing hearts, has been attributed to JPH2 downregulation. Here, we tested the hypothesis that adeno-associated virus type 9 (AAV9) mediated overexpression of JPH2 could halt the development of heart failure in a mouse model of transverse aortic constriction (TAC). METHODS AND RESULTS: Following TAC, a progressive decrease in ejection fraction was paralleled by a progressive decrease of cardiac JPH2 levels. AAV9-mediated expression of JPH2 rescued cardiac contractility in mice subjected to TAC. AAV9-JPH2 also preserved T-tubule structure. Moreover, the Ca2+ spark frequency was reduced and the Ca2+ transient amplitude was increased in AAV9-JPH2 mice following TAC, consistent with JPH2-mediated normalization of SR Ca2+ handling. CONCLUSIONS: This study demonstrates that AAV9-mediated JPH2 gene therapy maintained cardiac function in mice with early stage heart failure. Moreover, restoration of JPH2 levels prevented loss of T-tubules and suppressed abnormal SR Ca2+ leak associated with contractile failure following TAC. These findings suggest that targeting JPH2 might be an attractive therapeutic approach for treating pathological cardiac remodeling during heart failure.


Assuntos
Sinalização do Cálcio/fisiologia , Terapia Genética/métodos , Insuficiência Cardíaca/metabolismo , Insuficiência Cardíaca/terapia , Proteínas de Membrana/biossíntese , Proteínas Musculares/biossíntese , Canal de Liberação de Cálcio do Receptor de Rianodina/fisiologia , Adenoviridae/genética , Animais , Sinalização do Cálcio/efeitos dos fármacos , Células Cultivadas , Vetores Genéticos/administração & dosagem , Vetores Genéticos/genética , Insuficiência Cardíaca/diagnóstico por imagem , Masculino , Proteínas de Membrana/genética , Camundongos , Camundongos Endogâmicos C57BL , Proteínas Musculares/genética , Miócitos Cardíacos/efeitos dos fármacos , Miócitos Cardíacos/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA