RESUMO
The oceans remain a major source of natural compounds with potential in pharmacology. In particular, during the last few decades, marine cyanobacteria have been in focus as producers of interesting bioactive compounds, especially for the treatment of cancer. In this study, the anticancer potential of extracts from twenty eight marine cyanobacteria strains, belonging to the underexplored picoplanktonic genera, Cyanobium, Synechocystis and Synechococcus, and the filamentous genera, Nodosilinea, Leptolyngbya, Pseudanabaena and Romeria, were assessed in eight human tumor cell lines. First, a crude extract was obtained by dichloromethane:methanol extraction, and from it, three fractions were separated in a Si column chromatography. The crude extract and fractions were tested in eight human cancer cell lines for cell viability/toxicity, accessed with the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide (MTT) and lactic dehydrogenase release (LDH) assays. Eight point nine percent of the strains revealed strong cytotoxicity; 17.8% showed moderate cytotoxicity, and 14.3% assays showed low toxicity. The results obtained revealed that the studied genera of marine cyanobacteria are a promising source of novel compounds with potential anticancer activity and highlight the interest in also exploring the smaller filamentous and picoplanktonic genera of cyanobacteria.
Assuntos
Antineoplásicos/farmacologia , Produtos Biológicos/farmacologia , Cianobactérias/química , Antineoplásicos/isolamento & purificação , Oceano Atlântico , Produtos Biológicos/isolamento & purificação , Linhagem Celular Tumoral , Corantes , Cianobactérias/classificação , Ensaios de Seleção de Medicamentos Antitumorais , Humanos , L-Lactato Desidrogenase/química , Toxinas Marinhas , Portugal , Especificidade da Espécie , Sais de Tetrazólio , TiazóisRESUMO
Objective: This study qualitatively and quantitatively evaluated the transmission of light through a collagen membrane and the consequent local bone formation in a critical bone defect in vitro and in an animal model. Background: Currently, bone substitutes and collagen membranes are used to promote new bone formation; however, when associated with photobiomodulation, biomaterials can act as a barrier, hindering the passage of light radiation to the area to be treated. Methods: Light transmittance was evaluated in vitro with a power meter and a 100 mW, 808 nm laser source with and without membrane. Twenty-four male rats received a critical surgical defect of 5 mm in diameter in the calvarial bone, subsequently a biomaterial (Bio-Oss; Geistlich®, Switzerland) was applied, and the animals were divided into the following three groups: G1-collagen membrane and no irradiation; G2-collagen membrane and photobiomodulation (irradiation with 4 J of 808 nm); and G3-photobiomodulation (4 J) followed by a collagen membrane. Histomophometric analyses were performed at 7 and 14 days after euthanasia. Results: The membrane reduced the light transmittance (808 nm) by an average of 78%. Histomophometric analyses showed significant differences in new blood vessels on day 7 and bone neoformation on day 14. Irradiation without membrane interposition resulted in a 15% more neoformed bone compared with the control (G1), and 6.5% more bone compared with irradiation over the membrane (G2). Conclusions: The collagen membrane interferes with light penetration during photobiomodulation, decreases light dosimetry on the wound area, and interferes with bone neoformation.
Assuntos
Materiais Biocompatíveis , Osso e Ossos , Colágeno , Animais , Masculino , Ratos , Osteogênese , Ratos WistarRESUMO
Marine cyanobacteria have been considered a rich source of secondary metabolites with potential biotechnological applications, namely in the pharmacological field. Chemically diverse compounds were found to induce cytoxicity, anti-inflammatory and antibacterial activities. The potential of marine cyanobacteria as anticancer agents has however been the most explored and, besides cytotoxicity in tumor cell lines, several compounds have emerged as templates for the development of new anticancer drugs. The mechanisms implicated in the cytotoxicity of marine cyanobacteria compounds in tumor cell lines are still largely overlooked but several studies point to an implication in apoptosis. This association has been related to several apoptotic indicators such as cell cycle arrest, mitochondrial dysfunctions and oxidative damage, alterations in caspase cascade, alterations in specific proteins levels and alterations in the membrane sodium dynamics. In the present paper a compilation of the described marine cyanobacterial compounds with potential anticancer properties is presented and a review on the implication of apoptosis as the mechanism of cell death is discussed.
Assuntos
Antineoplásicos/farmacologia , Apoptose/efeitos dos fármacos , Cianobactérias/metabolismo , Animais , Antineoplásicos/química , Antineoplásicos/metabolismo , Linhagem Celular Tumoral , Cianobactérias/químicaRESUMO
This work addresses the development of a disposable electrochemical genosensor for the detection of the toxic dinoflagellate, Alexandrium minutum. Analyzing public databases, a specific 70 bp DNA probe, targeting A. minutum, was selected and designed. The genosensor methodology implied the immobilization of a A. minutum-specific DNA-capture probe onto screen-printed gold electrodes (SPGE). To improve both the selectivity and to avoid strong secondary structures, that could hinder the hybridization efficiency, a sandwich format of the A. minutum gene was designed using a fluorescein isothiocyanate-labelled signaling DNA probe and enzymatic amplification of the electrochemical signal. Using this electrochemical genosensor, a concentration range from 0.12 to 1.0 nM, a LD of 24.78 pM with a RSD <5.2% was determined. The genosensor was successfully applied to the selective analysis of the targeted A. minutum specific region denatured genomic DNA extracted from toxic dinoflagellates present in the Atlantic Ocean.
Assuntos
Técnicas Biossensoriais , Dinoflagellida , Sondas de DNA/genética , Dinoflagellida/genética , Eletrodos , Ouro , Hibridização de Ácido NucleicoRESUMO
Pyrethroid pesticides residues have been frequently detected in soils and have been recognized to contribute to soil toxicity. The phytotoxic impact of pesticides was evaluated in Cucumis sativus (C. sativus) seeds. Percentage of seed germination, root elongation, shoot length and leaf length were considered as endpoints to assess the possible acute phytotoxicity of soil by the exposure to pyrethroid pesticides (cypermethrin, deltamethrin and cyhalothrin) and its metabolite phenoxybenzoic acid (3-PBA), in a concentration range between 50 and 500µgkg-1. For germination percentage, it was only observed a negative impact when seeds were exposed to the metabolite. Cypermethrin showed impact in the three studied endpoints of seed development, while deltamethrin merely affected the root length. Concerning pigments content, it can be said that chlorophylls and total carotenoids median values increased for cypermethrin and deltamethrin. This increase was more pronounced to deltamethrin in joint effect with the organic solvent dimethyl sulphoxide (DMSO). When exposed to cyhalothrin and 3-PBA, no statistically significant differences were observed for C. sativus seeds to all the assessed endpoints of seed development and the investigated pigments content. This research brings new data concerning the relative sensitivity of C. sativus seeds to pyrethroids pesticides commonly found in agricultural facilities, as well as critical understanding and development of using C. sativus for phytotoxicity assessments efforts for pesticide exposures.
Assuntos
Cucumis sativus/efeitos dos fármacos , Praguicidas/toxicidade , Piretrinas/toxicidade , Sementes/efeitos dos fármacos , Poluentes do Solo/toxicidade , Carotenoides/análise , Clorofila/análise , GerminaçãoRESUMO
PURPOSE: In this work, we analysed the potential of picoplanktonic marine cyanobacteria strains as a source of anticancer compounds by elucidating the cytotoxic mechanisms of an ethyl acetate fraction of Cyanobium sp. (LEGE06113) and the Synechocystis salina (LEGE06155) on the RKO colon adenocarcinoma cell line. METHODS: Cytotoxicity was analysed by MTT. Effects on cells were evaluated by mRNA expression of cell cycle and apoptotic genes, flow cytometry (cell cycle), qualitative and quantitative fluorescence microscopy (apoptosis), and quantitative proteomics. RESULTS: IC50 values were 27.01 and 8.03 µg/ml for Cyanobium sp., and 37.71 and 17.17 µg/ml for Synechocystis salina, after 24 h and 48 h, respectively. Exposure to the Cyanobium sp. fraction increased 2.5 fold BCL-2 mRNA expression (p < 0.05), and altered proteins (13, p < 0.05) belonged to apoptosis (PSMA5, PSMA7, TPT1, UBE2K), cell cycle (EIF4E, PCNA), cellular metabolism (AHSG, GLO1, ATP5H, HSP90AB1, NME1, HNRNPC) and cell structure (KRT10). Exposure to the Synechocystis salina fraction decreased 2fold CCNB1 mRNA expression (p < 0.05). Accordingly, flow cytometry demonstrated a decrease of cells in the G0/G1 and S phase (p < 0.05), indicating a cell cycle arrest at the G2/M transition. Fluorescence microscopy confirmed a higher level of apoptosis compared to the solvent control group (p < 0.01). Altered proteins (6, p < 0.05) belonged to apoptosis (HSPD1, UBE2K), protein metabolism (PKM, PDIA3) and cell structure (KRT10, KRT1). CONCLUSION: Since induction of cytotoxicity is a very broad parameter, the study demonstrates the potential of picocyanobacteria to produce bioactive compounds that target cancer cells via different molecular mechanisms.