Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 71
Filtrar
1.
BMC Genomics ; 25(1): 388, 2024 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-38649808

RESUMO

BACKGROUND: Myxozoa is a class of cnidarian parasites that encompasses over 2,400 species. Phylogenetic relationships among myxozoans remain highly debated, owing to both a lack of informative morphological characters and a shortage of molecular markers. Mitochondrial (mt) genomes are a common marker in phylogeny and biogeography. However, only five complete myxozoan mt genomes have been sequenced: four belonging to two closely related genera, Enteromyxum and Kudoa, and one from the genus Myxobolus. Interestingly, while cytochrome oxidase genes could be identified in Enteromyxum and Kudoa, no such genes were found in Myxobolus squamalis, and another member of the Myxobolidae (Henneguya salminicola) was found to have lost its entire mt genome. To evaluate the utility of mt genomes to reconstruct myxozoan relationships and to understand if the loss of cytochrome oxidase genes is a characteristic of myxobolids, we sequenced the mt genome of five myxozoans (Myxobolus wulii, M. honghuensis, M. shantungensis, Thelohanellus kitauei and, Sphaeromyxa zaharoni) using Illumina and Oxford Nanopore platforms. RESULTS: Unlike Enteromyxum, which possesses a partitioned mt genome, the five mt genomes were encoded on single circular chromosomes. An mt plasmid was found in M. wulii, as described previously in Kudoa iwatai. In all new myxozoan genomes, five protein-coding genes (cob, cox1, cox2, nad1, and nad5) and two rRNAs (rnl and rns) were recognized, but no tRNA. We found that Myxobolus and Thelohanellus species shared unidentified reading frames, supporting the view that these mt open reading frames are functional. Our phylogenetic reconstructions based on the five conserved mt genes agree with previously published trees based on the 18S rRNA gene. CONCLUSIONS: Our results suggest that the loss of cytochrome oxidase genes is not a characteristic of all myxobolids, the ancestral myxozoan mt genome was likely encoded on a single circular chromosome, and mt plasmids exist in a few lineages. Our findings indicate that myxozoan mt sequences are poor markers for reconstructing myxozoan phylogenetic relationships because of their fast-evolutionary rates and the abundance of repeated elements, which complicates assembly.


Assuntos
Evolução Molecular , Genoma Mitocondrial , Myxozoa , Filogenia , Animais , Myxozoa/genética , Myxozoa/classificação , Complexo IV da Cadeia de Transporte de Elétrons/genética
2.
Artigo em Inglês | MEDLINE | ID: mdl-36748489

RESUMO

We describe Ceratomyxa saurida Zhao et al. 2015 and Ceratomyxa mai sp. nov. (Myxozoa: Ceratomyxidae) from the East China Sea. C. saurida was found in the gallbladders of 3/13 specimens of its type host, Saurida elongata Temminck and Schlegel 1846 (Aulopiformes). Myxospore characters were consistent with the original description to which we have added small subunit (SSU) rRNA gene data. C. mai sp. nov. was found in gallbladders of 3/13 specimens of S. elongata and 5/13 specimens of Neobythites sivicola Jordan and Snyder 1901 (Ophidiiformes). Mature myxospores of C. mai sp. nov. were crescentic in sutural view, with a deeply concave posterior angle 142.2±8.2° (125.8‒158.2°) and an arched anterior side. Shell valves were smooth and equal, 20.9±1.9 (17.3‒24.7) µm thick and 9.2±0.5 (8.1‒9.9) µm long, and joined at a straight, thin sutural plane passing between two nematocysts (polar capsules). The nematocysts were equal-sized, pyriform, 2.6±0.2 (2.4‒2.9) µm long and 2.7±0.2 (2.4‒3.3) µm wide, with their tapered ends pointed toward each other, located in the anterior third of the spore. Sequences of the SSU rRNA gene and internal transcribed spacer 1 showed that the isolates of C. mai sp. nov. obtained from S. elongata and N. sivicola were identical. The SSU rRNA gene sequence of C. mai sp. nov. was distinct from all known myxosporeans and clustered with C. saurida, and then with Ceratomyxa filamentosi Kalatzis, Kokkari and Katharios 2013, both of which also infect Aulopiformes fishes.


Assuntos
Doenças dos Peixes , Myxozoa , Doenças Parasitárias em Animais , Animais , Myxozoa/genética , Myxozoa/anatomia & histologia , Filogenia , Análise de Sequência de DNA , RNA Ribossômico 16S/genética , DNA Bacteriano/genética , Técnicas de Tipagem Bacteriana , Composição de Bases , Ácidos Graxos/química , Peixes , China , DNA Ribossômico/genética
3.
Proc Natl Acad Sci U S A ; 117(10): 5358-5363, 2020 03 10.
Artigo em Inglês | MEDLINE | ID: mdl-32094163

RESUMO

Although aerobic respiration is a hallmark of eukaryotes, a few unicellular lineages, growing in hypoxic environments, have secondarily lost this ability. In the absence of oxygen, the mitochondria of these organisms have lost all or parts of their genomes and evolved into mitochondria-related organelles (MROs). There has been debate regarding the presence of MROs in animals. Using deep sequencing approaches, we discovered that a member of the Cnidaria, the myxozoan Henneguya salminicola, has no mitochondrial genome, and thus has lost the ability to perform aerobic cellular respiration. This indicates that these core eukaryotic features are not ubiquitous among animals. Our analyses suggest that H. salminicola lost not only its mitochondrial genome but also nearly all nuclear genes involved in transcription and replication of the mitochondrial genome. In contrast, we identified many genes that encode proteins involved in other mitochondrial pathways and determined that genes involved in aerobic respiration or mitochondrial DNA replication were either absent or present only as pseudogenes. As a control, we used the same sequencing and annotation methods to show that a closely related myxozoan, Myxobolus squamalis, has a mitochondrial genome. The molecular results are supported by fluorescence micrographs, which show the presence of mitochondrial DNA in M. squamalis, but not in H. salminicola. Our discovery confirms that adaptation to an anaerobic environment is not unique to single-celled eukaryotes, but has also evolved in a multicellular, parasitic animal. Hence, H. salminicola provides an opportunity for understanding the evolutionary transition from an aerobic to an exclusive anaerobic metabolism.


Assuntos
Genoma Mitocondrial , Interações Hospedeiro-Parasita , Myxozoa/classificação , Myxozoa/genética , Salmão/parasitologia , Animais , Filogenia
4.
BMC Biol ; 20(1): 51, 2022 02 18.
Artigo em Inglês | MEDLINE | ID: mdl-35177085

RESUMO

BACKGROUND: Parasite evolution has been conceptualized as a process of genetic loss and simplification. Contrary to this model, there is evidence of expansion and conservation of gene families related to essential functions of parasitism in some parasite genomes, reminiscent of widespread mosaic evolution-where subregions of a genome have different rates of evolutionary change. We found evidence of mosaic genome evolution in the cnidarian Myxobolus honghuensis, a myxozoan parasite of fish, with extremely simple morphology. RESULTS: We compared M. honghuensis with other myxozoans and free-living cnidarians, and determined that it has a relatively larger myxozoan genome (206 Mb), which is less reduced and less compact due to gene retention, large introns, transposon insertion, but not polyploidy. Relative to other metazoans, the M. honghuensis genome is depleted of neural genes and has only the simplest animal immune components. Conversely, it has relatively more genes involved in stress resistance, tissue invasion, energy metabolism, and cellular processes compared to other myxozoans and free-living cnidarians. We postulate that the expansion of these gene families is the result of evolutionary adaptations to endoparasitism. M. honghuensis retains genes found in free-living Cnidaria, including a reduced nervous system, myogenic components, ANTP class Homeobox genes, and components of the Wnt and Hedgehog pathways. CONCLUSIONS: Our analyses suggest that the M. honghuensis genome evolved as a mosaic of conservative, divergent, depleted, and enhanced genes and pathways. These findings illustrate that myxozoans are not as genetically simple as previously regarded, and the evolution of some myxozoans is driven by both genomic streamlining and expansion.


Assuntos
Cnidários , Myxobolus , Parasitos , Animais , Cnidários/genética , Genoma , Proteínas Hedgehog , Filogenia
5.
Mol Biol Evol ; 38(2): 393-404, 2021 01 23.
Artigo em Inglês | MEDLINE | ID: mdl-32898240

RESUMO

DNA cytosine methylation is central to many biological processes, including regulation of gene expression, cellular differentiation, and development. This DNA modification is conserved across animals, having been found in representatives of sponges, ctenophores, cnidarians, and bilaterians, and with very few known instances of secondary loss in animals. Myxozoans are a group of microscopic, obligate endoparasitic cnidarians that have lost many genes over the course of their evolution from free-living ancestors. Here, we investigated the evolution of the key enzymes involved in DNA cytosine methylation in 29 cnidarians and found that these enzymes were lost in an ancestor of Myxosporea (the most speciose class of Myxozoa). Additionally, using whole-genome bisulfite sequencing, we confirmed that the genomes of two distant species of myxosporeans, Ceratonova shasta and Henneguya salminicola, completely lack DNA cytosine methylation. Our results add a notable and novel taxonomic group, the Myxosporea, to the very short list of animal taxa lacking DNA cytosine methylation, further illuminating the complex evolutionary history of this epigenetic regulatory mechanism.


Assuntos
Evolução Biológica , Metilação de DNA , Myxozoa/genética , Animais , Citosina/metabolismo
6.
Parasitology ; 149(14): 1862-1875, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36081219

RESUMO

The myxozoan Ceratonova shasta was described from hatchery rainbow trout over 70 years ago. The parasite continues to cause severe disease in salmon and trout, and is recognized as a barrier to salmon recovery in some rivers. This review incorporates changes in our knowledge of the parasite's life cycle, taxonomy and biology and examines how this information has expanded our understanding of the interactions between C. shasta and its salmonid and annelid hosts, and how overarching environmental factors affect this host­parasite system. Development of molecular diagnostic techniques has allowed discrimination of differences in parasite genotypes, which have differing host affinities, and enabled the measurement of the spatio-temporal abundance of these different genotypes. Establishment of the C. shasta life cycle in the laboratory has enabled studies on host­parasite interactions and the availability of transcriptomic data has informed our understanding of parasite virulence factors and host defences. Together, these advances have informed the development of models and management actions to mitigate disease.


Assuntos
Cnidários , Doenças dos Peixes , Myxozoa , Oncorhynchus mykiss , Parasitos , Doenças Parasitárias em Animais , Animais , Doenças Parasitárias em Animais/parasitologia , Doenças dos Peixes/parasitologia , Oncorhynchus mykiss/parasitologia
7.
J Aquat Anim Health ; 33(2): 116-122, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33616212

RESUMO

Recent range expansions of whirling disease impelled us to understand the impacts of its causative agent, the myxozoan parasite Myxobolus cerebralis, on lesser-studied fish hosts. Mountain Whitefish Prosopium williamsoni overlap broadly with M. cerebralis across the western United States and Canada, and populations have experienced widespread declines since the 1990s. To evaluate effects of the parasite on Mountain Whitefish, we revisit formerly unpublished work of the Colorado Division of Wildlife (now Colorado Parks and Wildlife), comparing infection in age-matched Mountain Whitefish, Rainbow Trout Oncorhynchus mykiss, and Brown Trout Salmo trutta. To complement the original report, we reanalyze mortality data and include additional SEM imagery. Infection of M. cerebralis in juvenile Mountain Whitefish was characterized by a brief but heavy period of mortality in the first 2 weeks after exposure, with limited pathology. This clinical effect is unique among the known salmonid hosts of M. cerebralis.


Assuntos
Doenças dos Peixes , Myxobolus , Oncorhynchus mykiss , Doenças Parasitárias em Animais , Animais , Colorado/epidemiologia , Eucariotos , Myxobolus/genética
8.
Parasitology ; 147(12): 1352-1358, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32660676

RESUMO

Myxozoans are parasitic, microscopic cnidarians that have retained the phylum-characteristic stinging capsules called nematocysts. Free-living cnidarians, like jellyfish and corals, utilize nematocysts for feeding and defence, with discharge powered by osmotic energy. Myxozoans use nematocysts to anchor to their fish hosts in the first step of infection, however, the discharge mechanism is poorly understood. We used Myxobolus cerebralis, a pathogenic myxozoan parasite of salmonid fishes, and developed two assays to explore the nature of its nematocyst discharge. Using parasite actinospores, the infectious stage to fish, we stimulated discharge of the nematocysts with rainbow trout mucus in vitro, in solutions enriched with chloride salts of Na+, K+, Ca2+ and Gd3+, and quantified discharge using microscopy. We then used quantitative polymerase chain reaction to evaluate the in vivo effects of these treatments, plus Mg2+ and the common aquaculture disinfectant KMnO4, on the ability of M. cerebralis actinospores to infect fish. We found that Mg2+ and Gd3+ reduced infection in vivo, whereas Na+ and K+ over-stimulated nematocyst discharge in vitro and reduced infection in vivo. These findings align with nematocyst discharge behaviour in free-living Cnidaria, and suggest phylum-wide commonalties, which could be exploited to develop novel approaches for controlling myxozoan diseases in aquaculture.


Assuntos
Cátions Monovalentes/metabolismo , Myxobolus/fisiologia , Nematocisto/metabolismo , Animais , Evolução Biológica , Cnidários , Doenças dos Peixes/parasitologia , Doenças dos Peixes/transmissão , Interações Hospedeiro-Parasita , Myxozoa/fisiologia , Oligoquetos/parasitologia , Salmonidae/parasitologia
9.
Parasitol Res ; 119(3): 859-870, 2020 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-31897785

RESUMO

Ceratonova shasta is the etiological agent of myxozoan-associated enteronecrosis in North American salmonids. The parasite's life cycle involves waterborne spores and requires both a salmonid fish and a freshwater fabriciid annelid. The success and survival of annelids can be enhanced by flow moderation by dams, and through the erosion of fine sediments into stream channels following wildfires. In this study, the presence of C. shasta environmental/ex-host DNA (eDNA) in river water and substrate samples collected from areas affected by recent fire activity in California, USA, was investigated. Additionally, DNA loads in the environment were compared to C. shasta infection in sentinel-exposed rainbow trout (Oncorhynchus mykiss). Significant associations between C. shasta detection in environmental samples and location within a wildfire perimeter (p = 0.002), between C. shasta detection in sentinel fish and exposure location within a wildfire perimeter (p = 0.015), and between C. shasta detection in fish and locations where water temperature was above the median (p < 0.001) were observed. Additionally, a higher prevalence of C. shasta infection in fish was detected where C. shasta was also detected in environmental samples (p < 0.001). Results suggest that pathogen eDNA sampling can be used as a non-invasive, rapid, specific, and sensitive method for establishing risk of C. shasta infection in wild populations. Knowledge of the complete life cycle of the target parasite, including ecology of each host, can inform the choice of eDNA sampling strategy. Environmental DNA sampling also revealed a novel species of Ceratonova, not yet observed in a host.


Assuntos
DNA Ambiental/análise , Monitoramento Ambiental/métodos , Florestas , Myxozoa/isolamento & purificação , Doenças Parasitárias em Animais/parasitologia , Animais , California/epidemiologia , DNA Ambiental/genética , Doenças dos Peixes/epidemiologia , Doenças dos Peixes/parasitologia , Água Doce/química , Água Doce/parasitologia , Myxozoa/classificação , Myxozoa/genética , Oncorhynchus mykiss/parasitologia , Doenças Parasitárias em Animais/epidemiologia
10.
Int J Mol Sci ; 21(16)2020 Aug 17.
Artigo em Inglês | MEDLINE | ID: mdl-32824626

RESUMO

Bryozoans are sessile, filter-feeding, and colony-building invertebrate organisms. Fredericella sultana is a well known primary host of the myxozoan parasite Tetracapsuloides bryosalmonae. There have been no attempts to identify the cellular responses induced in F. sultana during the T. bryosalmonae development. We therefore performed transcriptome analysis with the aim of identifying candidate genes and biological pathways of F. sultana involved in the response to T. bryosalmonae. A total of 1166 differentially up- and downregulated genes were identified in the infected F. sultana. Gene ontology of biological processes of upregulated genes pointed to the involvement of the innate immune response, establishment of protein localization, and ribosome biogenesis, while the downregulated genes were involved in mitotic spindle assembly, viral entry into the host cell, and response to nitric oxide. Eukaryotic Initiation Factor 2 signaling was identified as a top canonical pathway and MYCN as a top upstream regulator in the differentially expressed genes. Our study provides the first transcriptional profiling data on the F. sultana zooid's response to T. bryosalmonae. Pathways and upstream regulators help us to understand the complex interplay in the infected F. sultana. The results will facilitate the elucidation of innate immune mechanisms of bryozoan and will lay a foundation for further analyses on bryozoan-responsive candidate genes, which will be an important resource for the comparative analysis of gene expression in bryozoans.


Assuntos
Briozoários/genética , Myxozoa/patogenicidade , Transcriptoma , Animais , Briozoários/metabolismo , Briozoários/parasitologia
11.
Dis Aquat Organ ; 134(1): 43-55, 2019 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-32132272

RESUMO

Ichthyophthirius multifiliis (Ich) is a globally distributed, freshwater parasitic ciliate that infects wild and cultured fishes. It has a direct, temperature-dependent life cycle that enables rapid multiplication when hosts are plentiful and environmental conditions are favorable. Accurate detection is central to the control of Ich infections and prevention of host mortality, particularly in wild systems where chemical treatments are not feasible. In the Klamath River, California, USA, the parasite threatens pre-spawning adult salmon Oncorhynchus spp. Currently, Ich is monitored by lethal sampling of fish hosts and visual quantification of parasite load. This method is insensitive to light infections, contributes to pre-spawn mortality of wild salmon, and does not allow for population-level disease risk assessments. We developed and applied an alternate sampling method based on molecular analysis of water samples for parasite DNA. We sequenced the small subunit ribosomal DNA (ssrDNA) of Ich isolates collected from the Klamath River, and then developed and validated a novel qPCR assay (SYTO9) that targets Ich ssrDNA. Our assay has better specificity than previously published assays, with strong linearity, efficiency and repeatability. The limit of detection was 50 copies of ssrDNA, equivalent to ~2 theronts in a sample. We found that Ich abundance in environmental water samples collected from the lower Klamath River from July to October, 2014 through 2016, related to observed parasite load on salmon sampled concurrently, indicating that the qPCR assay could be a useful monitoring tool for Ich in the Klamath River, with applications beyond the region.


Assuntos
Doenças dos Peixes , Reação em Cadeia da Polimerase em Tempo Real , Animais , California , Rios , Salmão
12.
Parasitology ; 145(12): 1588-1593, 2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-29580305

RESUMO

Genotypes of the myxosporean parasite Ceratonova shasta are defined by the number of ATC repeats in the parasite's ribosomal DNA internal transcribed spacer region 1. These genotypes correlate with specific salmonid fish hosts. We observed coho salmon (Oncorhynchus kisutch) and rainbow trout (Oncorhynchus mykiss) with mixtures of genotypes II and III, and assumed that this was a consequence of fish having an aggregate infection from multiple individual parasites. We hypothesized that although multiple ITS copies are present within a parasite spore, the DNA sequences of these copies are identical, and thus individual C. shasta spores are a single genotype. We tested this by extracting and sequencing DNA from individual myxospores. We trialed three approaches for in-tube DNA extraction; digestion with proteinase K was superior to simply rehydrating spores, or incubation in the buffer. Sequences from 14 myxospores were each a mixture of genotypes II and III. Therefore, intra-genomic ribosomal DNA variants exist within individual parasite spores, and II and III should no longer be regarded as discrete C. shasta genotypes. This single-spore genotyping approach will be a useful tool for testing validity of other C. shasta genotypes, and for correctly matching genotype with phenotype for mixed infections of other myxozoan species.


Assuntos
Doenças dos Peixes/parasitologia , Myxozoa/classificação , Oncorhynchus mykiss/parasitologia , Oncorhynchus/parasitologia , Doenças Parasitárias em Animais/parasitologia , Animais , DNA Espaçador Ribossômico/genética , Genótipo , Técnicas de Genotipagem/veterinária , Myxozoa/genética , Myxozoa/isolamento & purificação
13.
Parasitology ; 145(9): 1137-1146, 2018 08.
Artigo em Inglês | MEDLINE | ID: mdl-29338808

RESUMO

We describe a new freshwater myxosporean species Ceratomyxa gracillima n. sp. from the gall bladder of the Amazonian catfish Brachyplatystoma rousseauxii; the first myxozoan recorded in this host. The new Ceratomyxa was described on the basis of its host, myxospore morphometry, ssrDNA and internal transcribed spacer region (ITS-1) sequences. Infected fish were sampled from geographically distant localities: the Tapajós River, Pará State, the Amazon River, Amapá State and the Solimões River, Amazonas State. Immature and mature plasmodia were slender, tapered at both ends, and exhibited vermiform motility. The ribosomal sequences from parasite isolates from the three localities were identical, and distinct from all other Ceratomyxa sequences. No population-level genetic variation was observed, even in the typically more variable ITS-1 region. This absence of genetic variation in widely separated parasite samples suggests high gene flow as a result of panmixia in the parasite populations. Maximum likelihood and maximum parsimony analyses placed C. gracillima n. sp. sister to Ceratomyxa vermiformis in a subclade together with Ceratomyxa brasiliensis and Ceratomyxa amazonensis, all of which have Amazonian hosts. This subclade, together with other Ceratomyxa from freshwater hosts, formed an apparently early diverging lineage. The Amazonian freshwater Ceratomyxa species may represent a radiation that originated during marine incursions into the Amazon basin that introduced an ancestral lineage in the late Oligocene or early Miocene.


Assuntos
Peixes-Gato/parasitologia , Doenças dos Peixes/parasitologia , Myxozoa/classificação , Filogenia , Animais , Brasil , DNA Ribossômico/genética , DNA Espaçador Ribossômico/genética , Água Doce/parasitologia , Vesícula Biliar/parasitologia , Myxozoa/isolamento & purificação , Rios/parasitologia
14.
Parasitol Res ; 117(3): 849-859, 2018 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-29374784

RESUMO

We describe three new Henneguya spp. (Myxobolidae) found parasitizing two species of cichlid fish from the Amazon basin, Brazil: H. tucunarei n. sp. from gill filaments of Cichla monoculus and H. tapajoensis n. sp. from gill filaments of Cichla pinima, both from the Tapajós River, Pará State and H. jariensis n. sp. in the fins of Cichla monoculus from the Jari River, Amapá State. We based descriptions on myxospore morphology and small subunit ribosomal DNA sequences, and used a phylogenetic analysis to compare the new Henneguya species with known relatives. Spores of the three species had similar morphology and morphometrics, but differed molecularly 5-7.5%, and were no more than 94% similar to any other sequence in GenBank. Together with having different hosts, these data supported the diagnosis of the parasites as distinct, novel species. Maximum likelihood and Bayesian analyses showed that H. tucunarei n. sp., H. tapajoensis n. sp., and H. jariensis n. sp. plus Henneguya paraensis (which parasitizes Cichla temensis) formed a well-supported sub-clade of Henneguya parasites of cichlids from the Amazon basin, in a lineage sister to those in characiforms hosts. Our analysis was consistent with previous studies that suggest that aquatic environment and vertebrate host group are the strongest correlates with phylogenetic signals in the Myxobolidae.


Assuntos
Ciclídeos/parasitologia , Doenças dos Peixes/parasitologia , Myxozoa/isolamento & purificação , Doenças Parasitárias em Animais/parasitologia , Nadadeiras de Animais , Animais , Teorema de Bayes , Brasil , Brânquias/parasitologia , Myxozoa/classificação , Filogenia , Subunidades Ribossômicas Menores , Rios , Esporos
15.
J Aquat Anim Health ; 30(2): 130-143, 2018 06.
Artigo em Inglês | MEDLINE | ID: mdl-29710407

RESUMO

Myxobolus cerebralis is a myxozoan parasite and the etiological agent of whirling disease in salmonids. The parasite's life cycle involves waterborne spores and requires both a salmonid fish and the benthic freshwater oligochaete worm Tubifex tubifex (Oligochaeta: Tubificidae). Wildfires can lead to the erosion of fine sediments into stream channels and have been implicated as promoting environmental conditions that are suitable for the survival and success of T. tubifex, whose presence in turn can affect the prevalence of M. cerebralis. Analysis of environmental DNA (eDNA) has the potential to be a powerful tool for evaluating the presence of microorganisms, for which direct observation is impossible. We investigated the presence of M. cerebraliseDNA in river water and river sediment samples collected from areas affected by recent fire activity in Plumas National Forest, California. We compared eDNA loads in the environment to M. cerebralis infection in T. tubifex and sentinel-exposed Rainbow Trout Oncorhynchus mykiss and the presence of T. tubifex lineages in the same environment. For the latter, we developed a multiplex quantitative PCR assay for detection of T. tubifex lineages I, III, and V. Lineage IIIT. tubifex and M. cerebralis (eDNA as well as DNA extracted from fish and worm tissues) were detected only in samples obtained from areas affected by the Moonlight wildfire. The association between M. cerebralis infection in sentinel-exposed fish and eDNA detection in environmental samples only approached significance at a P-value of 0.056. However, given the difference in relative effort between the two sampling methods (host versus nonhost environment), our data suggest that eDNA sampling of water and substrate is a promising approach for surveillance of myxozoan fish parasites.


Assuntos
DNA/análise , Doenças dos Peixes/parasitologia , Myxobolus/isolamento & purificação , Animais , California , Ecossistema , Monitoramento Ambiental , Sedimentos Geológicos/química , Reação em Cadeia da Polimerase Multiplex/métodos , Reação em Cadeia da Polimerase Multiplex/veterinária , Myxobolus/genética , Oligoquetos/genética , Oligoquetos/parasitologia , Oncorhynchus mykiss , Doenças Parasitárias em Animais/parasitologia , Rios/química , Incêndios Florestais
16.
Fish Shellfish Immunol ; 37(1): 87-95, 2014 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-24412163

RESUMO

We investigated intra-specific variation in the response of salmon to infection with the myxozoan Ceratomyxa shasta by comparing the progress of parasite infection and measures of host immune response in susceptible and resistant Chinook salmon Oncorhynchus tshawytscha at days 12, 25 and 90 post exposure. There were no differences in invasion of the gills indicating that resistance does not occur at the site of entry. In the intestine on day 12, infection intensity and Ig(+) cell numbers were higher in susceptible than resistant fish, but histological examination at that timepoint showed more severe inflammation in resistant fish. This suggests a role for the immune response in resistant fish that eliminates some parasites prior to or soon after reaching the intestine. Susceptible fish had a higher IFNγ, IL-6 and IL-10 response at day 12, but all died of fatal enteronecrosis by day 25. The greatest fold change in IFNγ expression was detected at day 25 in resistant Chinook. In addition, the number of Ig(+) cells in resistant Chinook also increased by day 25. By day 90, resistant Chinook had resolved the inflammation, cytokine expression had decreased and Ig(+) cell numbers were similar to uninfected controls. Thus, it appears that the susceptible strain was incapable of containing or eliminating C. shasta but resistant fish: 1) reduced infection intensity during early intestinal infection, 2) elicited an effective inflammatory response in the intestine that eliminated C. shasta, 3) resolved the inflammation and recovered from infection.


Assuntos
Resistência à Doença/imunologia , Doenças dos Peixes/imunologia , Doenças dos Peixes/parasitologia , Myxozoa/imunologia , Doenças Parasitárias em Animais/imunologia , Salmão , Animais , Citocinas/imunologia , Primers do DNA/genética , Brânquias/parasitologia , Imuno-Histoquímica/veterinária , Intestinos/parasitologia , Reação em Cadeia da Polimerase em Tempo Real/veterinária , Especificidade da Espécie , Fatores de Tempo
17.
Parasitol Res ; 113(7): 2665-70, 2014 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-24752369

RESUMO

During a survey of myxozoan parasites of freshwater fish from the São Francisco River in Minas Gerais State, Brazil, plasmodia of Myxidium ceccarellii n. sp. were found in gallbladders of two out of six specimens (22%) of Leporinus elongatus (Anastomidae). Parasite plasmodia were translucent and greenish, with disporic sporoblasts that develop asynchronously. Mature myxospores were ellipsoidal in frontal and lateral views, with slightly pointed ends. The surfaces of each valve had four to six longitudinal grooves. Spores dimensions were as follows: length 17.7 ± 0.5 µm (17.1-18.1), width 10.4 ± 0.47 µm (9.8-11.3), and thickness 10.1 ± 0.27 µm (9.6-10.4). Two polar capsules, one at either end of the spore, had the length of 6.3 ± 0.5 µm (5.7-7.0) and width of 6.4 ± 0.44 µm (5.7-6.9), with four to five polar filament turns. Some aberrant spores had one or three polar capsules. Partial sequencing of M. ceccarellii n. sp. small subunit ribosomal RNA (ssrRNA) gene resulted in 1,845 bp. This is the first molecular study of a Myxidium species that parasitizes a South American freshwater fish. Phylogenetic reconstruction using ssrRNA gene sequences showed that M. ceccarellii n. sp. was positioned basally in a recognized clade of myxozoans that infect the biliary systems of nonfish vertebrates.


Assuntos
Caraciformes/parasitologia , Doenças dos Peixes/parasitologia , Vesícula Biliar/parasitologia , Doenças Parasitárias em Animais/parasitologia , Filogenia , RNA Ribossômico/classificação , Animais , Brasil , Myxozoa/ultraestrutura , RNA Ribossômico/genética , Subunidades Ribossômicas Menores/genética , Rios , Análise de Sequência de DNA , Esporos/genética , Esporos/ultraestrutura
18.
Front Cell Infect Microbiol ; 14: 1369615, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38803570

RESUMO

Introduction: Little is known about the proteomic changes at the portals of entry in rainbow trout after infection with the myxozoan parasites, Myxobolus cerebralis, and Tetracapsuloides bryosalmonae. Whirling disease (WD) is a severe disease of salmonids, caused by the myxosporean M. cerebralis, while, proliferative kidney disease (PKD) is caused by T. bryosalmonae, which instead belongs to the class Malacosporea. Climate change is providing more suitable conditions for myxozoan parasites lifecycle, posing a high risk to salmonid aquaculture and contributing to the decline of wild trout populations in North America and Europe. Therefore, the aim of this study was to provide the first proteomic profiles of the host in the search for evasion strategies during single and coinfection with M. cerebralis and T. bryosalmonae. Methods: One group of fish was initially infected with M. cerebralis and another group with T. bryosalmonae. After 30 days, half of the fish in each group were co-infected with the other parasite. Using a quantitative proteomic approach, we investigated proteomic changes in the caudal fins and gills of rainbow trout before and after co-infection. Results: In the caudal fins, 16 proteins were differentially regulated post exposure to M. cerebralis, whereas 27 proteins were differentially modulated in the gills of the infected rainbow trout post exposure to T. bryosalmonae. After co-infection, 4 proteins involved in parasite recognition and the regulation of host immune responses were differentially modulated between the groups in the caudal fin. In the gills, 11 proteins involved in parasite recognition and host immunity, including 4 myxozoan proteins predicted to be virulence factors, were differentially modulated. Discussion: The results of this study increase our knowledge on rainbow trout co-infections by myxozoan parasites and rainbow trout immune responses against myxozoans at the portals of entry, supporting a better understanding of these host-parasite interactions.


Assuntos
Coinfecção , Doenças dos Peixes , Myxobolus , Myxozoa , Oncorhynchus mykiss , Doenças Parasitárias em Animais , Proteômica , Animais , Oncorhynchus mykiss/parasitologia , Oncorhynchus mykiss/imunologia , Doenças dos Peixes/parasitologia , Doenças dos Peixes/imunologia , Doenças Parasitárias em Animais/imunologia , Doenças Parasitárias em Animais/parasitologia , Coinfecção/parasitologia , Coinfecção/veterinária , Coinfecção/imunologia , Interações Hospedeiro-Parasita/imunologia , Proteoma , Brânquias/parasitologia , Brânquias/imunologia , Brânquias/metabolismo
19.
Appl Environ Microbiol ; 78(10): 3724-31, 2012 May.
Artigo em Inglês | MEDLINE | ID: mdl-22407689

RESUMO

The myxozoan parasite Ceratomyxa shasta is a significant pathogen of juvenile salmonids in the Pacific Northwest of North America and is limiting recovery of Chinook (Oncorhynchus tshawytscha) and coho (O. kisutch) salmon populations in the Klamath River. We conducted a 5-year monitoring program that comprised concurrent sentinel fish exposures and water sampling across 212 river kilometers of the Klamath River. We used percent mortality and degree-days to death to measure disease severity in fish. We analyzed water samples using quantitative PCR and Sanger sequencing, to determine total parasite density and relative abundance of C. shasta genotypes, which differ in their pathogenicity to salmonids. We detected the parasite throughout the study zone, but parasite density and genetic composition fluctuated spatially and temporally. Chinook and coho mortality increased with density of their specific parasite genotype, but mortality-density thresholds and time to death differed. A lethality threshold of 40% mortality was reached with 10 spores liter(-1) for Chinook but only 5 spores liter(-1) for coho. Parasite density did not affect degree-days to death for Chinook but was negatively correlated for coho, and there was wider variation among coho individuals. These differences likely reflect the different life histories and genetic heterogeneity of the salmon populations. Direct quantification of the density of host-specific parasite genotypes in water samples offers a management tool for predicting host population-level impacts.


Assuntos
Doenças dos Peixes/parasitologia , Myxozoa/isolamento & purificação , Myxozoa/patogenicidade , Doenças Parasitárias em Animais/parasitologia , Salmonidae/parasitologia , Água/parasitologia , Animais , Doenças dos Peixes/mortalidade , Doenças dos Peixes/patologia , Genótipo , Myxozoa/classificação , Myxozoa/genética , Noroeste dos Estados Unidos , Doenças Parasitárias em Animais/mortalidade , Doenças Parasitárias em Animais/patologia , Rios , Índice de Gravidade de Doença , Análise de Sobrevida
20.
Front Cell Infect Microbiol ; 12: 1032347, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36389158

RESUMO

Tetracapsuloides bryosalmonae is a malacosporean endoparasite that causes proliferative kidney disease (PKD) in wild and farmed salmonids in Europe and North America. The life cycle of T. bryosalmonae completes between invertebrate bryozoan and vertebrate fish hosts. Inside the fish, virulence factors of T. bryosalmonae are induced during infection or interactions with host cells. T. bryosalmonae genes expressed in vivo are likely to be important in fish pathogenesis. Herein, we identify in vivo induced antigens of T. bryosalmonae during infection in brown trout (Salmo trutta) using in vivo induced antigen technology (IVIAT). Brown trout were exposed to the spores of T. bryosalmonae and were sampled at different time points. The pooled sera were first pre-adsorbed with antigens to remove false positive results. Subsequently, adsorbed sera were used to screen a T. bryosalmonae cDNA phage expression library. Immunoscreening analysis revealed 136 immunogenic T. bryosalmonae proteins induced in brown trout during parasite development. They are involved in signal transduction, transport, metabolism, ion-protein binding, protein folding, and also include hypothetical proteins, of so far unknown functions. The identified in vivo induced antigens will be useful in the understanding of T. bryosalmonae pathogenesis during infection in susceptible hosts. Some of the antigens found may have significant implications for the discovery of candidate molecules for the development of potential therapies and preventive measures against T. bryosalmonae in salmonids.


Assuntos
Cnidários , Doenças dos Peixes , Nefropatias , Myxozoa , Parasitos , Doenças Parasitárias em Animais , Animais , Myxozoa/genética , Truta/parasitologia , Tecnologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA