Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Funct Integr Genomics ; 23(2): 103, 2023 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-36973584

RESUMO

Bamboo is an important genetic resource in India, supporting rural livelihood and industries. Unfortunately, most Indian bamboo taxa are devoid of basic genomic or marker information required to comprehend the genetic processes for further conservation and management. In this study, we perform genome survey sequencing for development of de novo genomic SSRs in Dendrocalamus longispathus, a socioeconomically important bamboo species of northeast India. Using Illumina platform, 69.49 million raw reads were generated and assembled into 1,145,321 contig with GC content 43% and N50 1228 bp. In total, 46,984 microsatellite repeats were mined-out wherein di-nucleotide repeats were most abundant (54.71%) followed by mono- (31.91%) and tri-repeats (9.85%). Overall, AT-rich repeats were predominant in the genome, but GC-rich motifs were more frequent in tri-repeats. Afterwards, 21,596 SSR loci were successfully tagged with the primer pairs, and a subset of 50 were validated through polymerase chain reaction amplification. Of these, 36 SSR loci were successfully amplified, and 16 demonstrated polymorphism. Using 13 polymorphic SSRs, a moderate level of gene diversity (He = 0.480; Ar = 3.52) was recorded in the analysed populations of D. longispathus. Despite the high gene flow (Nm = 4.928) and low genetic differentiation (FST = 0.119), severe inbreeding (FIS = 0.407) was detected. Further, genetic clustering and STRUCTURE analysis revealed that the entire genetic variability is captured under two major gene pools. Conclusively, we present a comprehensive set of novel SSR markers in D. longispathus as well as other taxa of tropical woody bamboos.


Assuntos
Genômica , Polimorfismo Genético , Marcadores Genéticos , Mapeamento Cromossômico , Índia , Repetições de Microssatélites , Genoma de Planta
2.
Crit Rev Biotechnol ; 43(6): 884-903, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35968912

RESUMO

Dangers confronting forest ecosystems are many and the strength of these biological systems is deteriorating, thus substantially affecting tree physiology, phenology, and growth. The establishment of genetically engineered trees into degraded woodlands, which would be adaptive to changing climate, could help in subsiding ecological threats and bring new prospects. This should not be resisted due to the apprehension of transgene dispersal in forests. Consequently, it is important to have a deep insight into the genetic structure and phenotypic limits of the reproductive capability of tree stands/population(s) to endure tolerance and survival. Importantly, for a better understanding of genes and their functional mechanisms, gene editing (GeEd) technology is an excellent molecular tool to unravel adaptation progressions. Therefore, GeEd could be harnessed for resolving the allelic interactions for the creation of gene diversity, and transgene dispersal may be alleviated among the population or species in different bioclimatic zones around the globe. This review highlights the potential of the CRISPR/Cas tools in genomic, transcriptomic, and epigenomic-based assorted and programmable alterations of genes in trees that might be able to fix the trait-specific gene function. Also, we have discussed the application of diverse forms of GeEd to genetically improve several traits, such as wood density, phytochemical constituents, biotic and abiotic stress tolerance, and photosynthetic efficiency in trees. We believe that the technology encourages fundamental research in the forestry sector besides addressing key aspects, which might fasten tree breeding and germplasm improvement programs worldwide.


Assuntos
Ecossistema , Edição de Genes , Madeira , Sistemas CRISPR-Cas/genética , Florestas , Árvores/genética , Genoma de Planta/genética
3.
Int J Biometeorol ; 64(9): 1629-1634, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-32415620

RESUMO

Populus deltoides is a fast-growing woody species possessing plethora of industrial applications. This species evolutionarily developed unisexual male and female catkin inflorescence on separate trees. Flowering usually occurs during early spring before the development of foliage, where buds appear near axils or at the extending shoots. In 2019, surveys were undertaken to study the flowering pattern of P. deltoides in the states of Punjab, Haryana, Uttar Pradesh and Uttarakhand in northern India. Interestingly, an anomalous flowering behaviour (appearance of off-season male catkins during autumn, i.e. October) was observed in a plantation trial at Kapurthala, Punjab. The male catkins were 2.7-3.1 ± 0.07 cm long and 0.3-0.5 ± 0.03 cm wide, which is significant for flowering and liberation of pollen grains. Preliminary results suggested that climatic factors, such as episodes of high or low temperature and the precipitation variation forcing the tree species to behave differently. Unearthing the climate-driven off-season flowering in other tree species alluded the stimulation of phytohormones, such as gibberellic and salicylic acid concentrations influencing the flowering time, therefore, needs further investigation in case of P. deltoides. Overall, this work provides early clues of changing climatic scenario altering the flowering pattern of a tropical forestry tree species.


Assuntos
Populus , Mudança Climática , Flores , Índia , Estações do Ano , Árvores
4.
Plant Physiol Biochem ; 210: 108610, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38615447

RESUMO

In the face of the formidable environmental challenges precipitated by the ongoing climate change, Plant Growth-Promoting Bacteria (PGPB) are gaining widespread acknowledgement for their potential as biofertilizers, biocontrol agents, and microbial inoculants. However, a knowledge gap pertains to the ability of PGPB to improve stress tolerance in forestry species via cross-inoculation. To address this gap, the current investigation centres on PGPBs, namely, Acinetobacter johnsonii, Cronobacter muytjensii, and Priestia endophytica, selected from the phyllosphere of robust and healthy plants thriving in the face of stress-inducing conditions. These strains were selected based on their demonstrated adaptability to saline, arid, and nitrogen-deficient environments. The utilization of PGPB treatment resulted in an improvement of stomatal conductance (gs) and transpiration rate (E) in poplar plants exposed to both salt and drought stress. It also induced an increase in essential biochemical components such as proline (PRO), catalase (CAT), peroxidase (POD), and superoxide dismutase (SOD). These reactions were accompanied by a decrease in leaf malonaldehyde (MDA) content and electrolyte leakage (EL). Furthermore, the PGPB treatment demonstrated a notable enhancement in nutrient absorption, particularly nitrogen and carbon, achieved through the solubilization of nutrients. The estimation of canopy temperature via thermal imaging proved to be an efficient method for distinguishing stress reactions in poplar than conventional temperature recording techniques. In summation, the utilization of PGPB especially Cronobacter muytjensii in this study, yielded profound improvements in the stress tolerance of poplar plants, manifesting in reduced membrane lipid peroxidation, enhanced photosynthesis, and bolstered antioxidant capacity within the leaves.


Assuntos
Populus , Estresse Fisiológico , Populus/microbiologia , Populus/fisiologia , Endófitos/fisiologia , Folhas de Planta/metabolismo , Secas , Prolina/metabolismo , Adaptação Fisiológica , Acinetobacter/fisiologia
5.
3 Biotech ; 13(6): 213, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37251733

RESUMO

Melampsora medusae f. sp. deltoidae is causing serious foliar rust disease on Populus deltoides clones in India. In the present study, a novel fungal hyperparasite on M. medusae has been reported. The hyperparasitic fungus was isolated from the uredeniospores of the rust fungi and identified as Cladosporium oxysporum by morphological characterization and DNA barcode technique based on the Internal Transcribed Spacer (ITS) region of nrDNA and beta-tubulin (TUB) gene region. Hyperparasitism was further confirmed through leaf assay and cavity slide methods. Leaf assay method showed no adverse effect of C. oxysporum on poplar leaves. However, the mean germination percentage of urediniospores was significantly decreased (p < 0.05) in the cavity slide method when a conidial suspension (1.5 × 107 conidia per ml) of C. oxysporum was applied in different deposition sequences. Scanning and light microscopic observations were made to explore the mode of action of the hyperparasitism. The antagonistic fungus vividly showed three different types of antagonism mechanisms, including enzymatic, direct, and contact parasitism. Alternatively, by screening 25 high-yielding clones of P. deltoides, five clones (FRI-FS-83, FRI-FS-92, FRI-FS-140, FRI-AM-111, and D-121) were enlisted under highly resistant category. Present study revealed an antagonistic relationship between C. oxysporum and M. medusae, which could be an effective method of biocontrol in field plantations of poplar. Combining this biocontrol approach with the use of resistant host germplasm could be an environment friendly strategy for preventing foliar rust and increasing poplar productivity in northern India. Supplementary Information: The online version contains supplementary material available at 10.1007/s13205-023-03623-x.

6.
Environ Pollut ; 313: 120191, 2022 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-36116570

RESUMO

Unplanned urbanization and heavy automobile use by the rapidly growing population contribute to a variety of environmental issues. Roadside plants can mitigate air pollution by modifying their enzymatic activity, physiological and anatomical traits. Plant enzymes, physiological and anatomical traits play an important role in adaptation and mitigation mechanisms against vehicular emissions. There is a significant gap in understanding of how plant enzymes and anatomical traits respond or how they participate in modulating the effect of vehicular emissions/air pollution. Modulation of leaf anatomical traits is also useful in regulating plant physiological behavior. Hence, the present study was conducted to evaluate the effects of vehicular pollution on the enzymatic activity, physiological, and anatomical traits of plant species that grow in forests (S1) and alongside roads (S2-1 km away from the S1 site) during different seasons. The present study examines four commonly found roadside tree species i.e. Grevillea robusta, Cassia fistula, Quercus leucotrichophora and Cornus oblonga. The study found that the activities of catalase and phenylalanine ammonium enzymes were higher in G. robusta species of roadside than control site (S1). Non-enzymatic antioxidants such as flavonoid and phenol were also found in higher concentrations in roadside tree species during the summer season. However, the measured values of physiological traits were higher in Q. leucotrichophora tree species of S1 during the summer season. When compared to the other species along the roadside, Q. leucotrichophora had the highest number of stomata and epidermal cells during the summer season. Hence, we found that tree species grown along the roadside adapted towards vehicular emissions by modulating their enzymatic, physiological, and anatomical traits to mitigate the effect of air pollution.


Assuntos
Poluentes Atmosféricos , Compostos de Amônio , Poluentes Atmosféricos/análise , Poluentes Atmosféricos/toxicidade , Catalase , Monitoramento Ambiental , Flavonoides , Fenóis , Fenilalanina , Folhas de Planta/química , Plantas , Árvores , Emissões de Veículos/análise , Emissões de Veículos/toxicidade
7.
Mol Ecol Resour ; 11(1): 219-22, 2011 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-21429127

RESUMO

This article documents the addition of 229 microsatellite marker loci to the Molecular Ecology Resources Database. Loci were developed for the following species: Acacia auriculiformis × Acacia mangium hybrid, Alabama argillacea, Anoplopoma fimbria, Aplochiton zebra, Brevicoryne brassicae, Bruguiera gymnorhiza, Bucorvus leadbeateri, Delphacodes detecta, Tumidagena minuta, Dictyostelium giganteum, Echinogammarus berilloni, Epimedium sagittatum, Fraxinus excelsior, Labeo chrysophekadion, Oncorhynchus clarki lewisi, Paratrechina longicornis, Phaeocystis antarctica, Pinus roxburghii and Potamilus capax. These loci were cross-tested on the following species: Acacia peregrinalis, Acacia crassicarpa, Bruguiera cylindrica, Delphacodes detecta, Tumidagena minuta, Dictyostelium macrocephalum, Dictyostelium discoideum, Dictyostelium purpureum, Dictyostelium mucoroides, Dictyostelium rosarium, Polysphondylium pallidum, Epimedium brevicornum, Epimedium koreanum, Epimedium pubescens, Epimedium wushanese and Fraxinus angustifolia.


Assuntos
Bases de Dados de Ácidos Nucleicos , Dictyostelium/genética , Epimedium/genética , Haptófitas/genética , Repetições de Microssatélites , Dados de Sequência Molecular
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA