Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
J Am Soc Nephrol ; 29(2): 545-556, 2018 02.
Artigo em Inglês | MEDLINE | ID: mdl-29222395

RESUMO

Acidosis is an important complication of AKI and CKD. Renal intercalated cells (ICs) express the proton pumping vacuolar H+-ATPase (V-ATPase) and are extensively involved in acid-base homeostasis. H+ secretion in type A intercalated cells (A-ICs) is regulated by apical vesicle recycling and stimulated by cAMP. In other cell types, cAMP is increased by extracellular agonists, including adenosine, through purinergic receptors. Adenosine is a Food and Drug Administration-approved drug, but very little is known about the effect of adenosine on IC function. Therefore, we investigated the role of adenosine in the regulation of V-ATPase in ICs. Intravenous treatment of mice with adenosine or agonists of ADORA2A and ADORA2B purinergic P1 receptors induced V-ATPase apical membrane accumulation in medullary A-ICs but not in cortical A-ICs or other IC subtypes. Both receptors are located in A-IC apical membranes, and adenosine injection increased urine adenosine concentration and decreased urine pH. Cell fractionation showed that adenosine or an ADORA2A or ADORA2B agonist induced V-ATPase translocation from vesicles to the plasma membrane and increased protein kinase A (PKA)-dependent protein phosphorylation in purified medullary ICs that were isolated from mice. Either ADORA2A or ADORA2B antagonists or the PKA inhibitor mPKI blocked these effects. Finally, a fluorescence pH assay showed that adenosine activates V-ATPase in isolated medullary ICs. Our study shows that medullary A-ICs respond to luminal adenosine through ADORA2A and ADORA2B receptors in a cAMP/PKA pathway-dependent mechanism to induce V-ATPase-dependent H+ secretion.


Assuntos
Agonistas do Receptor A2 de Adenosina/farmacologia , Adenosina/metabolismo , Adenosina/farmacologia , Células Epiteliais/enzimologia , ATPases Vacuolares Próton-Translocadoras/metabolismo , Equilíbrio Ácido-Base , Antagonistas do Receptor A2 de Adenosina/farmacologia , Animais , Membrana Celular/metabolismo , Proteínas Quinases Dependentes de AMP Cíclico/antagonistas & inibidores , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Homeostase , Rim/citologia , Masculino , Camundongos , Fosforilação/efeitos dos fármacos , Inibidores de Proteínas Quinases/farmacologia , Transporte Proteico/efeitos dos fármacos , Receptor A2A de Adenosina , Receptor A2B de Adenosina , Vesículas Transportadoras , Urinálise
2.
Cell Tissue Res ; 363(1): 97-104, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26337514

RESUMO

Macrophages (MΦ) and dendritic cells (DCs) are heterogeneous families of functionally and developmentally related immune cells that play crucial roles in tissue homeostasis and the regulation of immune responses. During the past 5 years, immunologists have generated a considerable amount of data that challenge dogmas about the ontogeny and functions of these highly versatile cells. The male excurrent duct system plays a critical role in the establishment of fertility by allowing sperm maturation, transport and storage. In addition, it is challenged by pathogens and must establish a protective and tolerogenic environment for a continuous flow of autoantigenic spermatozoa. The post-testicular environment and, in particular, the epididymis contain an intricate network of DCs and MΦ; however, the immunophysiology of this intriguing and highly specialized mucosal system is poorly understood. This review summarizes the current trends in mouse MΦ and DC biology and speculates about their roles in the steady-state epididymis. Unraveling immune cell functions in the male reproductive tract is an essential prerequisite for the design of innovative strategies aimed at controlling male fertility and treating infertility.


Assuntos
Células Dendríticas/citologia , Epididimo/citologia , Macrófagos/citologia , Espermatozoides/citologia , Animais , Antígenos/imunologia , Células Dendríticas/imunologia , Epididimo/imunologia , Humanos , Tolerância Imunológica , Inflamação/imunologia , Macrófagos/imunologia , Masculino , Maturação do Esperma , Espermatozoides/imunologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA