Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Environ Sci Technol ; 58(22): 9679-9688, 2024 Jun 04.
Artigo em Inglês | MEDLINE | ID: mdl-38776554

RESUMO

Wildfires produce solid residuals that have unique chemical and physical properties compared to unburned materials, which influence their cycling and fate in the natural environment. Visual burn severity assessment is used to evaluate post-fire alterations to the landscape in field-based studies, yet muffle furnace methods are commonly used in laboratory studies to assess molecular scale alterations along a temperature continuum. Here, we examined solid and leachable organic matter characteristics from chars visually characterized as low burn severity that were created either on an open air burn table or from low-temperature muffle furnace burns. We assessed how the different combustion conditions influence solid and dissolved organic matter chemistries and explored the potential influence of these results on the environmental fate and reactivity. Notably, muffle furnace chars produced less leachable carbon and nitrogen than open air chars across land cover types. Organic matter produced from muffle furnace burns was more homogeneous than open air chars. This work highlights chemical heterogeneities that exist within a single burn severity category, potentially influencing our conceptual understanding of pyrogenic organic matter cycling in the natural environment, including transport and processing in watersheds. Therefore, we suggest that open air burn studies are needed to further advance our understanding of pyrogenic organic matter's environmental reactivity and fate.


Assuntos
Incêndios Florestais , Compostos Orgânicos
2.
PLoS One ; 17(5): e0268059, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35617308

RESUMO

Dissolved black carbon (DBC) is the condensed aromatic portion of dissolved organic matter produced from the incomplete combustion of biomass and other thermogenic processes. DBC quantification facilitates the examination of the production, accumulation, cycling, transformation, and effects of biologically recalcitrant condensed aromatic carbon in aquatic environments. Due to the heterogeneous nature of DBC molecules, concentrations are difficult to measure directly. Here, the method for DBC quantification consists of oxidizing condensed aromatic carbon to benzenepolycarboxylic acids (BPCAs), which are used as proxies for the assessment of DBC in the original sample. The concentrations of oxidation products (BPCAs) are quantified using high-performance liquid chromatography. DBC concentrations are determined from the concentration of BPCAs using a previously established conversion factor. Details and full descriptions of the preparative and analytical procedures and techniques of the BPCA method are usually omitted for brevity in published method sections and method-specific papers. With this step-by-step protocol, we aim to clarify the steps of DBC analysis, especially for those adopting or conducting the BPCA method for the first time.


Assuntos
Fuligem , Água , Carbono , Cromatografia Líquida de Alta Pressão , Fuligem/análise
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA