Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Med Chem ; 65(17): 11854-11875, 2022 09 08.
Artigo em Inglês | MEDLINE | ID: mdl-36037447

RESUMO

UDP-3-O-(R-3-hydroxymyristoyl)-N-acetylglucosamine deacetylase (LpxC) is a promising drug target in Gram-negative bacteria. Previously, we described a correlation between the residence time of inhibitors on Pseudomonas aeruginosa LpxC (paLpxC) and the post-antibiotic effect (PAE) caused by the inhibitors on the growth of P. aeruginosa. Given that drugs with prolonged activity following compound removal may have advantages in dosing regimens, we have explored the structure-kinetic relationship for paLpxC inhibition by analogues of the pyridone methylsulfone PF5081090 (1) originally developed by Pfizer. Several analogues have longer residence times on paLpxC than 1 (41 min) including PT913, which has a residence time of 124 min. PT913 also has a PAE of 4 h, extending the original correlation observed between residence time and PAE. Collectively, the studies provide a platform for the rational modulation of paLpxC inhibitor residence time and the potential development of antibacterial agents that cause prolonged suppression of bacterial growth.


Assuntos
Amidoidrolases , Pseudomonas aeruginosa , Antibacterianos/farmacologia , Inibidores Enzimáticos/farmacologia , Bactérias Gram-Negativas/metabolismo , Cinética
2.
ACS Infect Dis ; 7(9): 2755-2763, 2021 09 10.
Artigo em Inglês | MEDLINE | ID: mdl-34357770

RESUMO

The translation of time-dependent drug-target occupancy to extended pharmacological activity at low drug concentration depends on factors such as target vulnerability and the rate of target turnover. Previously, we demonstrated that the postantibiotic effect (PAE) caused by inhibitors of bacterial drug targets could be used to assess target vulnerability, and that high levels of target vulnerability coupled with relatively low rates of target resynthesis resulted in a strong correlation between drug-target residence time and the PAE following compound washout. Although the residence time of inhibitors on UDP-3-O-acyl-N-acetylglucosamine deacetylase (LpxC) in Pseudomonas aeruginosa (paLpxC) results in significant PAE, inhibitors of the equivalent enzyme in Escherichia coli (ecLpxC) do not cause a PAE. Hyperactivity of the fatty acid biosynthesis enzyme FabZ or the inclusion of sub-MIC levels of azithromycin lead to the observation of a PAE for three inhibitors of ecLpxC. FabZ hyperactivity has been shown to stabilize ecLpxC, and using mass spectrometry, we demonstrate that the appearance of a PAE can be directly linked to a 3-fold increase in the stability of ecLpxC. These studies substantiate the importance of target turnover in time-dependent drug activity.


Assuntos
Antibacterianos , Preparações Farmacêuticas , Antibacterianos/farmacologia , Bactérias , Escherichia coli/genética , Pseudomonas aeruginosa
3.
ACS Infect Dis ; 7(4): 746-758, 2021 04 09.
Artigo em Inglês | MEDLINE | ID: mdl-33710875

RESUMO

The enoyl-acyl carrier protein (ACP) reductase (ENR) is a key enzyme within the bacterial fatty-acid synthesis pathway. It has been demonstrated that small-molecule inhibitors carrying the diphenylether (DPE) scaffold bear a great potential for the development of highly specific and effective drugs against this enzyme class. Interestingly, different substitution patterns of the DPE scaffold have been shown to lead to varying effects on the kinetic and thermodynamic behavior toward ENRs from different organisms. Here, we investigated the effect of a 4'-pyridone substituent in the context of the slow tight-binding inhibitor SKTS1 on the inhibition of the Staphylococcus aureus enoyl-ACP-reductase saFabI and the closely related isoenzyme from Mycobacterium tuberculosis, InhA, and explored a new interaction site of DPE inhibitors within the substrate-binding pocket. Using high-resolution crystal structures of both complexes in combination with molecular dynamics (MD) simulations, kinetic measurements, and quantum mechanical (QM) calculations, we provide evidence that the 4'-pyridone substituent adopts different tautomeric forms when bound to the two ENRs. We furthermore elucidate the structural determinants leading to significant differences in the residence time of SKTS1 on both enzymes.


Assuntos
Inibidores Enzimáticos/farmacologia , Isoenzimas , Oxirredutases/antagonistas & inibidores , Isomerismo , Mycobacterium tuberculosis/enzimologia , Staphylococcus aureus/enzimologia
4.
ACS Infect Dis ; 5(7): 1231-1238, 2019 07 12.
Artigo em Inglês | MEDLINE | ID: mdl-31007018

RESUMO

Benzoxaboroles are a class of boron-containing compounds with a broad range of biological activities. A subset of benzoxaboroles have antimicrobial activity due primarily to their ability to inhibit leucyl-tRNA synthetase (LeuRS) via the oxaborole tRNA-trapping mechanism, which involves the formation of a stable tRNALeu-benzoxaborole adduct in which the boron atom interacts with the 2'- and 3'-oxygen atoms of the terminal 3' tRNA adenosine. We sought to identify other antibacterial targets for this promising class of compounds by means of mode-of-action studies, and we selected a nitrophenyl sulfonamide based oxaborole (PT638) as a probe molecule because it had potent antibacterial activity (MIC of 0.4 µg/mL against methicillin-resistant Staphylococcus aureus) but did not inhibit LeuRS (IC50 > 100 µM). Analogues of PT638 were synthesized to explore the importance of the sulfonamide linker and the impact of altering the functionalization of the phenyl ring. These structure-activity-relationship studies revealed that the nitro substituent was essential for activity. To identify the target for PT638, we raised resistant strains of S. aureus, and whole-genome sequencing revealed mutations in leuRS, suggesting that the target for this compound was indeed LeuRS, despite the lack of enzyme inhibition. Subsequent analysis of PT638 metabolism demonstrated that bacterial nitroreductases readily converted this compound into the amino analogue, which inhibited LeuRS with an IC50 of 3.0 ± 1.2 µM, demonstrating that PT638 is thus a prodrug.


Assuntos
Antibacterianos/síntese química , Compostos de Boro/síntese química , Leucina-tRNA Ligase/antagonistas & inibidores , Staphylococcus aureus/efeitos dos fármacos , Sulfonamidas/química , Animais , Antibacterianos/química , Antibacterianos/farmacologia , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Compostos de Boro/química , Compostos de Boro/farmacologia , Chlorocebus aethiops , Inibidores Enzimáticos/síntese química , Inibidores Enzimáticos/química , Inibidores Enzimáticos/farmacologia , Leucina-tRNA Ligase/genética , Staphylococcus aureus Resistente à Meticilina/efeitos dos fármacos , Staphylococcus aureus Resistente à Meticilina/enzimologia , Staphylococcus aureus Resistente à Meticilina/genética , Estrutura Molecular , Nitrorredutases/genética , Nitrorredutases/metabolismo , Staphylococcus aureus/enzimologia , Staphylococcus aureus/genética , Relação Estrutura-Atividade , Células Vero , Sequenciamento Completo do Genoma
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA