Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Biomacromolecules ; 22(2): 386-398, 2021 02 08.
Artigo em Inglês | MEDLINE | ID: mdl-33125232

RESUMO

A key initiating step in atherosclerosis is the accumulation and retention of apolipoprotein B complexing lipoproteins within the artery walls. In this work, we address this exact initiating mechanism of atherosclerosis, which results from the oxidation of low-density lipoproteins (oxLDL) using therapeutic nanogels. We present the development of biocompatible polyethylene glycol (PEG) cross-linked nanogels formed from a single simultaneous cross-linking and co-polymerization step in water without the requirement for an organic solvent, high temperature, or shear stress. The nanogel synthesis also incorporates in situ noncovalent electrostatically driven template polymerization around an innate anti-inflammatory and anti-oxidizing paraoxonase-1 (PON-1) enzyme payload-the release of which is triggered because of matrix metalloproteinase responsive elements instilled in the PEG cross-linker monomer. The results obtained demonstrate the potential of triggered release of the PON-1 enzyme and its efficacy against the production of ox-LDL, and therefore a reduction in macrophage foam cell and reactive oxygen species formation.


Assuntos
Lipoproteínas LDL , Polietilenoglicóis , Nanogéis , Polimerização , Água
2.
Colloids Surf B Biointerfaces ; 236: 113790, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38367288

RESUMO

This work introduces novel nitroxide-based nanogels (NGs) crafted through controlled RAFT (Reversible Addition Fragmentation chain Transfer) polymerization, showcasing over 85% improved shelf-life compared to native superoxide dismutase (SOD) enzymes. These 30-40 nm NGs hold great promise for injectable delivery, effectively reducing foam cell formation and displaying potent antioxidant behavior against various reactive oxygen species (ROS), revolutionizing antioxidant therapy. Featuring a meticulously designed core-shell structure via precise RAFT polymerization, these NGs mimic SOD enzymatic activity with nitroxide-based antioxidants, providing unprecedented defense against ROS. Combining methacrylated 2,2,6,6-Tetramethyl-4-piperidyl methacrylate (PMA) and Glycidyl methacrylate (GMA) monomers with precisely synthesized nitroxyl radicals results in exceptional properties. Validated through comprehensive analytical methods, these NGs exhibit remarkable stability, halting foam cell formation even at high concentrations, and demonstrate notable biocompatibility. Their ability to protect low density lipoprotein (LDL) from oxidation for up to a month positions them at the forefront of combating cardiovascular diseases, especially atherosclerosis. This study pioneers injectable antioxidant therapy, offering an innovative approach to cardiovascular ailments. Targeting narrow plaques signifies a promising intervention, reshaping cardiovascular disease treatments. It highlights the potential of advanced drug delivery in biomedicine, promising more effective cardiovascular disease treatments.


Assuntos
Antioxidantes , Doenças Cardiovasculares , Óxidos de Nitrogênio , Humanos , Antioxidantes/farmacologia , Nanogéis , Espécies Reativas de Oxigênio , Superóxido Dismutase
3.
Nanoscale Adv ; 4(3): 742-753, 2022 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-36131819

RESUMO

Atherosclerosis is a leading cause of death worldwide. Antioxidant therapy has been considered a promising treatment modality for atherosclerosis, since reactive oxygen species (ROS) play a major role in the pathogenesis of atherosclerosis. We developed ROS-scavenging antioxidant nanoparticles (NPs) that can serve as an effective therapy for atherosclerosis. The newly developed novel antioxidant ROS-eliminating NPs were synthesized via reversible addition-fragmentation chain-transfer (RAFT) polymerization and act as a superoxide dismutase (SOD) mimetic agent. SOD is an anti-ROS enzyme which is difficult to use for passive delivery due to its low half-life and stability. Copolymers were synthesized using different feed ratios of 2,2,6,6-tetramethyl-4-piperidyl methacrylate (PMA) and glycidyl methacrylate (GMA) monomers and an anti-ROS nitroxyl radical polymer was prepared via oxidation. The copolymer was further conjugated with a 6-aminofluorescein via a oxirane ring opening reaction for intracellular delivery in RAW 264.7 cells. The synthesized copolymers were blended to create NPs (∼150 nm size) in aqueous medium and highly stable up to three weeks. The NPs were shown to be taken up by macrophages and to be cytocompatible even at high dose levels (500 µg mL-1). Finally, the nitroxide NPs has been shown to inhibit foam cell formation in macrophages by decreasing internalization of oxidized low-density lipoproteins.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA