Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Development ; 149(21)2022 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-36196593

RESUMO

Seedling vigor is a key agronomic trait that determines juvenile plant performance. Angiosperm seeds develop inside fruits and are connected to the mother plant through vascular tissues. Their formation requires plant-specific genes, such as BREVIS RADIX (BRX) in Arabidopsis thaliana roots. BRX family proteins are found throughout the euphyllophytes but also occur in non-vascular bryophytes and non-seed lycophytes. They consist of four conserved domains, including the tandem BRX domains. We found that bryophyte or lycophyte BRX homologs can only partially substitute for Arabidopsis BRX (AtBRX) because they miss key features in the linker between the BRX domains. Intriguingly, however, expression of a BRX homolog from the lycophyte Selaginella moellendorffii (SmBRX) in an A. thaliana wild-type background confers robustly enhanced root growth vigor that persists throughout the life cycle. This effect can be traced to a substantial increase in seed and embryo size, is associated with enhanced vascular tissue proliferation, and can be reproduced with a modified, SmBRX-like variant of AtBRX. Our results thus suggest that BRX variants can boost seedling vigor and shed light on the activity of ancient, non-angiosperm BRX family proteins.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Magnoliopsida , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Plântula/genética , Magnoliopsida/metabolismo , Regulação da Expressão Gênica de Plantas/genética , Raízes de Plantas/metabolismo , Arabidopsis/metabolismo
2.
Proc Natl Acad Sci U S A ; 115(12): E2869-E2878, 2018 03 20.
Artigo em Inglês | MEDLINE | ID: mdl-29507239

RESUMO

Tip-growing cells elongate in a highly polarized manner via focused secretion of flexible cell-wall material. Calcium has been implicated as a vital factor in regulating the deposition of cell-wall material. However, deciphering the molecular and mechanistic calcium targets in vivo has remained challenging. Here, we investigated intracellular calcium dynamics in the moss Physcomitrella patens, which provides a system with an abundant source of genetically identical tip-growing cells, excellent cytology, and a large molecular genetic tool kit. To visualize calcium we used a genetically encoded cytosolic FRET probe, revealing a fluctuating tipward gradient with a complex oscillatory profile. Wavelet analysis coupled with a signal-sifting algorithm enabled the quantitative comparison of the calcium behavior in cells where growth was inhibited mechanically, pharmacologically, or genetically. We found that cells with suppressed growth have calcium oscillatory profiles with longer frequencies, suggesting that there is a feedback between the calcium gradient and growth. To investigate the mechanistic basis for this feedback we simultaneously imaged cytosolic calcium and actin, which has been shown to be essential for tip growth. We found that high cytosolic calcium promotes disassembly of a tip-focused actin spot, while low calcium promotes assembly. In support of this, abolishing the calcium gradient resulted in dramatic actin accumulation at the tip. Together these data demonstrate that tipward calcium is quantitatively linked to actin accumulation in vivo and that the moss P. patens provides a powerful system to uncover mechanistic links between calcium, actin, and growth.


Assuntos
Actinas/metabolismo , Bryopsida/crescimento & desenvolvimento , Bryopsida/metabolismo , Cálcio/metabolismo , Citoesqueleto de Actina/metabolismo , Actinas/análise , Bryopsida/citologia , Bryopsida/genética , Cálcio/análise , Citosol/metabolismo , Corantes Fluorescentes/metabolismo , Dispositivos Lab-On-A-Chip , Imagem Molecular/instrumentação , Imagem Molecular/métodos , Células Vegetais/metabolismo , Plantas Geneticamente Modificadas , Análise de Ondaletas
3.
Plant Physiol ; 172(1): 28-37, 2016 09.
Artigo em Inglês | MEDLINE | ID: mdl-27406170

RESUMO

Key developmental processes that occur on the subcellular and cellular level or occur in occluded tissues are difficult to access, let alone image and analyze. Recently, culturing living samples within polydimethylsiloxane (PDMS) microfluidic devices has facilitated the study of hard-to-reach developmental events. Here, we show that an early diverging land plant, Physcomitrella patens, can be continuously cultured within PDMS microfluidic chambers. Because the PDMS chambers are bonded to a coverslip, it is possible to image P. patens development at high resolution over long time periods. Using PDMS chambers, we report that wild-type protonemal tissue grows at the same rate as previously reported for growth on solid medium. Using long-term imaging, we highlight key developmental events, demonstrate compatibility with high-resolution confocal microscopy, and obtain growth rates for a slow-growing mutant. By coupling the powerful genetic tools available to P. patens with long-term growth and imaging provided by PDMS microfluidic chambers, we demonstrate the capability to study cellular and subcellular developmental events in plants directly and in real time.


Assuntos
Bryopsida/crescimento & desenvolvimento , Dispositivos Lab-On-A-Chip , Técnicas Analíticas Microfluídicas/métodos , Bryopsida/citologia , Bryopsida/genética , Dimetilpolisiloxanos/química , Microscopia Confocal , Mutação , Reprodutibilidade dos Testes , Fatores de Tempo , Imagem com Lapso de Tempo/métodos , Técnicas de Cultura de Tecidos/instrumentação , Técnicas de Cultura de Tecidos/métodos
5.
Science ; 373(6554): 586-590, 2021 07 30.
Artigo em Inglês | MEDLINE | ID: mdl-34326243

RESUMO

In animals, PIEZOs are plasma membrane-localized cation channels involved in diverse mechanosensory processes. We investigated PIEZO function in tip-growing cells in the moss Physcomitrium patens and the flowering plant Arabidopsis thaliana PpPIEZO1 and PpPIEZO2 redundantly contribute to the normal growth, size, and cytoplasmic calcium oscillations of caulonemal cells. Both PpPIEZO1 and PpPIEZO2 localized to vacuolar membranes. Loss-of-function, gain-of-function, and overexpression mutants revealed that moss PIEZO homologs promote increased complexity of vacuolar membranes through tubulation, internalization, and/or fission. Arabidopsis PIEZO1 also localized to the tonoplast and is required for vacuole tubulation in the tips of pollen tubes. We propose that in plant cells the tonoplast has more freedom of movement than the plasma membrane, making it a more effective location for mechanosensory proteins.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Bryopsida/metabolismo , Canais Iônicos/metabolismo , Proteínas de Plantas/metabolismo , Vacúolos/ultraestrutura , Arabidopsis/crescimento & desenvolvimento , Arabidopsis/ultraestrutura , Proteínas de Arabidopsis/genética , Bryopsida/crescimento & desenvolvimento , Bryopsida/ultraestrutura , Cálcio/metabolismo , Sinalização do Cálcio , Citoplasma/metabolismo , Membranas Intracelulares/metabolismo , Canais Iônicos/genética , Proteínas de Plantas/genética , Tubo Polínico/crescimento & desenvolvimento , Tubo Polínico/metabolismo , Tubo Polínico/ultraestrutura , Vacúolos/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA