Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Mar Drugs ; 21(3)2023 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-36976239

RESUMO

This study investigates the potential of utilizing three food wastes: cheese whey (CW), beet molasses (BM), and corn steep liquor (CSL) as alternative nutrient sources for the cultivation of the diatom Phaeodactylum tricornutum, a promising source of polyunsaturated eicosapentaenoic acid (EPA) and the carotenoid fucoxanthin. The CW media tested did not significantly impact the growth rate of P. tricornutum; however, CW hydrolysate significantly enhances cell growth. BM in cultivation medium enhances biomass production and fucoxanthin yield. The optimization of the new food waste medium was conducted through the application of a response surface methodology (RSM) using hydrolyzed CW, BM, and CSL as factors. The results showed a significant positive impact of these factors (p < 0.005), with an optimized biomass yield of 2.35 g L-1 and a fucoxanthin yield of 3.64 mg L-1 using a medium composed of 33 mL L-1 of CW, 2.3 g L-1 of BM, and 2.24 g L-1 of CSL. The experimental results reported in this study showed that some food by-products from a biorefinery perspective could be utilized for the efficient production of fucoxanthin and other high-added-value products such as eicosapentaenoic acid (EPA).


Assuntos
Queijo , Diatomáceas , Ácidos Graxos Ômega-3 , Microalgas , Eliminação de Resíduos , Ácidos Graxos Ômega-3/metabolismo , Ácido Eicosapentaenoico , Soro do Leite , Diatomáceas/metabolismo , Antioxidantes/metabolismo , Proteínas do Soro do Leite/metabolismo , Microalgas/metabolismo
2.
Mar Drugs ; 20(1)2021 Dec 29.
Artigo em Inglês | MEDLINE | ID: mdl-35049894

RESUMO

Mozzarella stretching water (MSW) is a dairy effluent generated from mozzarella cheese production that does not have a real use and is destined to disposal, causing environmental problems and representing a high disposal cost for dairy producers. Spent brewery yeast (SBY) is another promising food waste produced after brewery manufacturing that could be recycled in new biotechnological processes. Aurantiochytrium mangrovei is an aquatic protist known as producer of bioactive lipids such as omega 3 long chain polyunsaturated fatty acids (ω3 LC-PUFA), in particular docosahexaenoic acid (DHA). In this work MSW and SBY have been used to formulate new sustainable growth media for A. mangrovei cultivation and production of DHA in an attempt to valorize these effluents. MSW required an enzymatic hydrolysis to enhance the biomass production. The new media obtained from hydrolysed MSW was also optimized using response surface methodologies, obtaining 10.14 g L-1 of biomass in optimized medium, with a DHA content of 1.21 g L-1.


Assuntos
Bebidas Alcoólicas , Indústria de Laticínios , Ácidos Graxos Ômega-3/metabolismo , Resíduos Industriais , Estramenópilas/metabolismo , Animais , Organismos Aquáticos , Ácidos Docosa-Hexaenoicos/metabolismo , Humanos , Avaliação de Programas e Projetos de Saúde
3.
Foods ; 12(15)2023 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-37569168

RESUMO

This study involves an investigation of the effects of various cooking temperatures, freeze-thaw processes, and food preservatives on the quality and shelf-life of sous vide Mediterranean mussels. Cooking temperatures of 80 °C or above significantly improved the microbiological quality, with bacterial counts remaining within the acceptability range for human consumption even after 21 days of refrigerated storage. Fast freezing followed by slow thawing preserved the highest moisture content, potentially improving texture. Sensory analysis revealed that refrigerated sous vide mussels maintained a comparable taste to freshly cooked samples. Frozen samples reheated via microwaving exhibited more intense flavour than pan-reheated or fresh mussels. Food additives, including citric acid, potassium benzoate, and potassium sorbate, alone or in combination with grape seed oil, significantly reduced total volatile basic nitrogen and thiobarbituric acid-reactive substances during 28 days of storage, indicating decreased spoilage and lipid oxidation. Mussels with a combination of these additives registered a nitrogen content as low as 22 mg of N/100g after 28 days, well below the limit of acceptability (<35 mg of N/100g). Food additives also inhibited bacterial growth, with mesophilic bacteria count below 3.35 Log CFU/g after 28 days, compared with 5.37 Log CFU/g in control samples. This study provides valuable insights for developing optimal cooking and preservation methods for sous vide cooked seafood, underscoring the need for further research on optimal cooking and freeze-thaw protocols for various seafood types.

4.
Plants (Basel) ; 11(5)2022 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-35270171

RESUMO

Cynara cardunculus (Asteraceae family) is a perennial plant native to Mediterranean regions. This plant represents a source of high-value compounds, such as polyphenols and fatty acids that have several industrial applications. However, in vitro plant cell cultures can represent a valid alternative to in-field cultivation and facilitate the extraction of metabolites of commercial interest. Generally, sucrose is the main sugar used for plant cell cultures, but other carbon sources can be considered. Here, we investigated the potential use of alternative organic carbon sources, such as galactose, maltose, glucose, glycerol, fructose, lactose, and starch, for the cultivation of C. cardunculus cells. Moreover, cardoon cells were collected, and an extraction of polyphenols and oils was performed to study the effects of different carbon sources on the production of bioactive molecules. This study provided evidence that cardoon cell growth can be supported by carbon sources other than sucrose. However, the carbon source inducing optimum growth, did not necessarily induce the highest production of high-value compounds.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA