Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Basic Microbiol ; 63(12): 1361-1372, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37712102

RESUMO

Heavy metal pollution has posed a severe danger to environmental stability due to its high toxicity and lack of biodegradability. The present study deals with the appraisement of tolerance shown by various bacteria in varied copper and iron concentrations. Among the 20 isolates, four isolates, GN2, SC5, SC8, and SC10, exhibiting more significant iron and copper tolerance, were selected and identified by 16 S ribosomal ribonucleic acid (rRNA) gene sequence analysis as Pantoea agglomerans strain GN2, Pantoea sp. strain SC5, Bacillus sp. strain SC8 and Priestia aryabhattaistrain SC10. The minimum inhibitory concentration of molecularly identified strains revealed that P. agglomerans strain GN2 showed tolerance to iron sulfate and copper sulfate upto 600 and 400 µg/mL, whereas Bacillus sp. SC8 (OQ202165) showed tolerance of 700 and 250 µg/mL were tolerant to iron sulfate and copper sulfate up to 700 and 150 µg/mL, respectively. Pantoea sp. strain SC5 showed significant tolerance to both heavy metals. The isolates were further studied for their ability to grow at varying temperatures and pH ranges. Most of the isolates showed optimal growth at 37°C and pH 7. However, Pantoea sp. SC5 was competent to have prominent growth at 45°C and pH 8.0. Microbial remediation, which is eco-friendly, has proven the most effective method for bioremediation of heavy metal-contaminated environments. Using heavy metal-resistant bacteria for microbial remediation of iron and copper-contaminated environments could be a viable and valuable strategy. These isolates could also be used to decontaminate heavy metal-polluted agricultural soils.


Assuntos
Bacillus , Metais Pesados , Poluentes do Solo , Cobre/farmacologia , Sulfato de Cobre , Metais Pesados/toxicidade , Bactérias , Ferro/farmacologia , Biodegradação Ambiental , Poluentes do Solo/toxicidade
2.
Molecules ; 27(18)2022 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-36144621

RESUMO

More than 70% of our planet is covered by extremely cold environments, nourishing a broad diversity of microbial life. Temperature is the most significant parameter that plays a key role in the distribution of microorganisms on our planet. Psychrophilic microorganisms are the most prominent inhabitants of the cold ecosystems, and they possess potential cold-active enzymes with diverse uses in the research and commercial sectors. Psychrophiles are modified to nurture, replicate, and retain their active metabolic activities in low temperatures. Their enzymes possess characteristics of maximal activity at low to adequate temperatures; this feature makes them more appealing and attractive in biotechnology. The high enzymatic activity of psychrozymes at low temperatures implies an important feature for energy saving. These enzymes have proven more advantageous than their mesophilic and thermophilic counterparts. Therefore, it is very important to explore the efficiency and utility of different psychrozymes in food processing, pharmaceuticals, brewing, bioremediation, and molecular biology. In this review, we focused on the properties of cold-active enzymes and their diverse uses in different industries and research areas. This review will provide insight into the areas and characteristics to be improved in cold-active enzymes so that potential and desired enzymes can be made available for commercial purposes.


Assuntos
Temperatura Baixa , Ecossistema , Biotecnologia , Enzimas/metabolismo , Preparações Farmacêuticas
3.
Front Plant Sci ; 13: 888710, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35720588

RESUMO

The change in climatic conditions is the major cause for decline in crop production worldwide. Decreasing crop productivity will further lead to increase in global hunger rate. Climate change results in environmental stress which has negative impact on plant-like deficiencies in growth, crop yield, permanent damage, or death if the plant remains in the stress conditions for prolonged period. Cold stress is one of the main abiotic stresses which have already affected the global crop production. Cold stress adversely affects the plants leading to necrosis, chlorosis, and growth retardation. Various physiological, biochemical, and molecular responses under cold stress have revealed that the cold resistance is more complex than perceived which involves multiple pathways. Like other crops, legumes are also affected by cold stress and therefore, an effective technique to mitigate cold-mediated damage is critical for long-term legume production. Earlier, crop improvement for any stress was challenging for scientific community as conventional breeding approaches like inter-specific or inter-generic hybridization had limited success in crop improvement. The availability of genome sequence, transcriptome, and proteome data provides in-depth sight into different complex mechanisms under cold stress. Identification of QTLs, genes, and proteins responsible for cold stress tolerance will help in improving or developing stress-tolerant legume crop. Cold stress can alter gene expression which further leads to increases in stress protecting metabolites to cope up the plant against the temperature fluctuations. Moreover, genetic engineering can help in development of new cold stress-tolerant varieties of legume crop. This paper provides a general insight into the "omics" approaches for cold stress in legume crops.

4.
J Fungi (Basel) ; 7(12)2021 Dec 10.
Artigo em Inglês | MEDLINE | ID: mdl-34947042

RESUMO

Rice blast is considered one of the most important fungal diseases of rice. Although diseases can be managed by using resistant cultivars, the blast pathogen has successfully overcome the single gene resistance in a short period and rendered several varieties susceptible to blast which were otherwise intended to be resistant. As such, chemical control is still the most efficient method of disease control for reducing the losses caused due to diseases. Field experiments were conducted over two successive years, 2018 and 2019, in temperate rice growing areas in northern India. All the fungicides effectively reduced leaf blast incidence and intensity, and neck blast incidence under field conditions. Tricyclazole proved most effective against rice blast and recorded a leaf blast incidence of only 8.41%. Among the combinations of fungicides, azoxystrobin + difenoconazole and azoxystrobin + tebuconazole were highly effective, recording a leaf blast incidence of 9.19 and 10.40%, respectively. The chemical combination mancozeb + carbendazim proved less effective in controlling the blast and it recorded a disease incidence of 27.61%. A similar trend was followed in neck blast incidence with tricyclazole, azoxystrobin + difenoconazole, and azoxystrobin + tebuconazole showing the highest levels of blast reductions. It is evident from the current study that the tested fungicide combinations can be used as alternatives to tricyclazole which is facing the challenges of fungicide resistance development and other environmental concerns and has been banned from use in India and other countries. The manuscript may provide a guideline of fungicide application to farmers cultivating susceptible varieties of rice.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA