RESUMO
Introduction: Floating Harbor syndrome (FHS) is an extremely rare disorder, with slightly more than a hundred cases reported worldwide. FHS is caused by heterozygous mutations in the SRCAP gene; however, little is known about the pathogenesis of FHS or the effectiveness of its treatment. Methods: Whole-exome sequencing (WES) was performed for the definitive molecular diagnosis of the disease. Identified variants were validated using Sanger sequencing. In addition, systematic literature and public data on genetic variation in SRCAP and the effects of growth hormone (GH) treatment was conducted. Results: We herein report the first case of FHS in the Russian Federation. The male proband presented with most of the typical phenotypic features of FHS, including short stature, skeletal and facial features, delayed growth and bone age, high pitched voice, and intellectual impairment. The proband also had partial growth hormone deficiency. We report the history of treatment of the proband with GH, which resulted in modest improvement in growth prior to puberty. WES revealed a pathogenic c.7466C>G (p.Ser2489*) mutation in the last exon of the FHS-linked SRCAP gene. A systematic literature review and analysis of available genetic variation datasets highlighted an unusual distribution of pathogenic variants in SRCAP and confirmed the lack of pathogenicity for variants outside of exons 33 and 34. Finally, we suggested a new model of FHS pathogenesis which provides possible basis for the dominant negative nature of FHS-causing mutations and explains limited effects of GH treatment in FHS. Conclusion: Our findings expand the number of reported FHS cases and provide new insights into disease genetics and the efficiency of GH therapy for FHS patients.
RESUMO
The present study reports on the frequency and the spectrum of genetic variants causative of monogenic diabetes in Russian children with nontype 1 diabetes mellitus. The present study included 60 unrelated Russian children with nontype 1 diabetes mellitus diagnosed before the age of 18 years. Genetic variants were screened using wholeexome sequencing (WES) in a panel of 35 genes causative of maturity onset diabetes of the young (MODY) and transient or permanent neonatal diabetes. Verification of the WES results was performed using PCRdirect sequencing. A total of 38 genetic variants were identified in 33 out of 60 patients (55%). The majority of patients (27/33, 81.8%) had variants in MODYrelated genes: GCK (n=19), HNF1A (n=2), PAX4 (n=1), ABCC8 (n=1), KCNJ11 (n=1), GCK+HNF1A (n=1), GCK+BLK (n=1) and GCK+BLK+WFS1 (n=1). A total of 6 patients (6/33, 18.2%) had variants in MODYunrelated genes: GATA6 (n=1), WFS1 (n=3), EIF2AK3 (n=1) and SLC19A2 (n=1). A total of 15 out of 38 variants were novel, including GCK, HNF1A, BLK, WFS1, EIF2AK3 and SLC19A2. To summarize, the present study demonstrates a high frequency and a wide spectrum of genetic variants causative of monogenic diabetes in Russian children with nontype 1 diabetes mellitus. The spectrum includes previously known and novel variants in MODYrelated and unrelated genes, with multiple variants in a number of patients. The prevalence of GCK variants indicates that diagnostics of monogenic diabetes in Russian children may begin with testing for MODY2. However, the remaining variants are present at low frequencies in 9 different genes, altogether amounting to ~50% of the cases and highlighting the efficiency of using WES in nonGCKMODY cases.