Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 291
Filtrar
1.
Cell ; 182(4): 947-959.e17, 2020 08 20.
Artigo em Inglês | MEDLINE | ID: mdl-32735851

RESUMO

Non-genetic factors can cause individual cells to fluctuate substantially in gene expression levels over time. It remains unclear whether these fluctuations can persist for much longer than the time of one cell division. Current methods for measuring gene expression in single cells mostly rely on single time point measurements, making the duration of gene expression fluctuations or cellular memory difficult to measure. Here, we combined Luria and Delbrück's fluctuation analysis with population-based RNA sequencing (MemorySeq) for identifying genes transcriptome-wide whose fluctuations persist for several divisions. MemorySeq revealed multiple gene modules that expressed together in rare cells within otherwise homogeneous clonal populations. These rare cell subpopulations were associated with biologically distinct behaviors like proliferation in the face of anti-cancer therapeutics. The identification of non-genetic, multigenerational fluctuations can reveal new forms of biological memory in single cells and suggests that non-genetic heritability of cellular state may be a quantitative property.


Assuntos
Análise de Célula Única/métodos , Transcriptoma , Divisão Celular , Linhagem Celular Tumoral , Resistencia a Medicamentos Antineoplásicos/genética , Genes Reporter , Humanos , Hibridização in Situ Fluorescente , Microscopia de Fluorescência , Análise de Sequência de RNA , Imagem com Lapso de Tempo
2.
Nat Rev Neurosci ; 22(6): 372-384, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33911229

RESUMO

Childhood socio-economic status (SES), a measure of the availability of material and social resources, is one of the strongest predictors of lifelong well-being. Here we review evidence that experiences associated with childhood SES affect not only the outcome but also the pace of brain development. We argue that higher childhood SES is associated with protracted structural brain development and a prolonged trajectory of functional network segregation, ultimately leading to more efficient cortical networks in adulthood. We hypothesize that greater exposure to chronic stress accelerates brain maturation, whereas greater access to novel positive experiences decelerates maturation. We discuss the impact of variation in the pace of brain development on plasticity and learning. We provide a generative theoretical framework to catalyse future basic science and translational research on environmental influences on brain development.


Assuntos
Encéfalo/crescimento & desenvolvimento , Meio Ambiente , Classe Social , Adolescente , Adultos Sobreviventes de Eventos Adversos na Infância , Experiências Adversas da Infância , Animais , Bibliometria , Encéfalo/embriologia , Córtex Cerebral/citologia , Córtex Cerebral/crescimento & desenvolvimento , Córtex Cerebral/ultraestrutura , Criança , Pré-Escolar , Estudos Transversais , Feminino , Humanos , Lactente , Aprendizagem/fisiologia , Estudos Longitudinais , Masculino , Grupos Minoritários , Rede Nervosa , Plasticidade Neuronal , Neurociências , Tamanho do Órgão , Gravidez , Estresse Fisiológico
3.
Nat Rev Neurosci ; 21(10): 524-534, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32879507

RESUMO

The first issue of Nature Reviews Neuroscience was published 20 years ago, in 2000. To mark this anniversary, in this Viewpoint article we asked a selection of researchers from across the field who have authored pieces published in the journal in recent years for their thoughts on notable and interesting developments in neuroscience, and particularly in their areas of the field, over the past two decades. They also provide some thoughts on current lines of research and questions that excite them.


Assuntos
Neurociências/história , História do Século XXI , Humanos
4.
Proc Natl Acad Sci U S A ; 119(33): e2110416119, 2022 08 16.
Artigo em Inglês | MEDLINE | ID: mdl-35939696

RESUMO

Prior work has shown that there is substantial interindividual variation in the spatial distribution of functional networks across the cerebral cortex, or functional topography. However, it remains unknown whether there are sex differences in the topography of individualized networks in youth. Here, we leveraged an advanced machine learning method (sparsity-regularized non-negative matrix factorization) to define individualized functional networks in 693 youth (ages 8 to 23 y) who underwent functional MRI as part of the Philadelphia Neurodevelopmental Cohort. Multivariate pattern analysis using support vector machines classified participant sex based on functional topography with 82.9% accuracy (P < 0.0001). Brain regions most effective in classifying participant sex belonged to association networks, including the ventral attention, default mode, and frontoparietal networks. Mass univariate analyses using generalized additive models with penalized splines provided convergent results. Furthermore, transcriptomic data from the Allen Human Brain Atlas revealed that sex differences in multivariate patterns of functional topography were spatially correlated with the expression of genes on the X chromosome. These results highlight the role of sex as a biological variable in shaping functional topography.


Assuntos
Córtex Cerebral , Vias Neurais , Caracteres Sexuais , Adolescente , Adulto , Mapeamento Encefálico , Córtex Cerebral/fisiologia , Criança , Feminino , Humanos , Aprendizado de Máquina , Imageamento por Ressonância Magnética , Masculino , Adulto Jovem
5.
Nat Methods ; 18(7): 775-778, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-34155395

RESUMO

Diffusion-weighted magnetic resonance imaging (dMRI) is the primary method for noninvasively studying the organization of white matter in the human brain. Here we introduce QSIPrep, an integrative software platform for the processing of diffusion images that is compatible with nearly all dMRI sampling schemes. Drawing on a diverse set of software suites to capitalize on their complementary strengths, QSIPrep facilitates the implementation of best practices for processing of diffusion images.


Assuntos
Encéfalo/diagnóstico por imagem , Imagem de Difusão por Ressonância Magnética/métodos , Processamento de Imagem Assistida por Computador/métodos , Software , Humanos , Linguagens de Programação , Fluxo de Trabalho
6.
Proc Natl Acad Sci U S A ; 118(32)2021 08 10.
Artigo em Inglês | MEDLINE | ID: mdl-34349019

RESUMO

Many complex networks depend upon biological entities for their preservation. Such entities, from human cognition to evolution, must first encode and then replicate those networks under marked resource constraints. Networks that survive are those that are amenable to constrained encoding-or, in other words, are compressible. But how compressible is a network? And what features make one network more compressible than another? Here, we answer these questions by modeling networks as information sources before compressing them using rate-distortion theory. Each network yields a unique rate-distortion curve, which specifies the minimal amount of information that remains at a given scale of description. A natural definition then emerges for the compressibility of a network: the amount of information that can be removed via compression, averaged across all scales. Analyzing an array of real and model networks, we demonstrate that compressibility increases with two common network properties: transitivity (or clustering) and degree heterogeneity. These results indicate that hierarchical organization-which is characterized by modular structure and heterogeneous degrees-facilitates compression in complex networks. Generally, our framework sheds light on the interplay between a network's structure and its capacity to be compressed, enabling investigations into the role of compression in shaping real-world networks.


Assuntos
Redes de Comunicação de Computadores , Compressão de Dados , Modelos Teóricos , Algoritmos , Análise por Conglomerados , Redes Comunitárias , Humanos , Distribuição Aleatória
7.
Proc Natl Acad Sci U S A ; 118(47)2021 11 23.
Artigo em Inglês | MEDLINE | ID: mdl-34789565

RESUMO

Living systems break detailed balance at small scales, consuming energy and producing entropy in the environment to perform molecular and cellular functions. However, it remains unclear how broken detailed balance manifests at macroscopic scales and how such dynamics support higher-order biological functions. Here we present a framework to quantify broken detailed balance by measuring entropy production in macroscopic systems. We apply our method to the human brain, an organ whose immense metabolic consumption drives a diverse range of cognitive functions. Using whole-brain imaging data, we demonstrate that the brain nearly obeys detailed balance when at rest, but strongly breaks detailed balance when performing physically and cognitively demanding tasks. Using a dynamic Ising model, we show that these large-scale violations of detailed balance can emerge from fine-scale asymmetries in the interactions between elements, a known feature of neural systems. Together, these results suggest that violations of detailed balance are vital for cognition and provide a general tool for quantifying entropy production in macroscopic systems.


Assuntos
Encéfalo/fisiologia , Entropia , Fenômenos Fisiológicos Celulares , Neurociência Cognitiva , Humanos , Modelos Biológicos
8.
Proc Natl Acad Sci U S A ; 118(5)2021 02 02.
Artigo em Inglês | MEDLINE | ID: mdl-33495341

RESUMO

Over one third of the estimated 3 million people with epilepsy in the United States are medication resistant. Responsive neurostimulation from chronically implanted electrodes provides a promising treatment alternative to resective surgery. However, determining optimal personalized stimulation parameters, including when and where to intervene to guarantee a positive patient outcome, is a major open challenge. Network neuroscience and control theory offer useful tools that may guide improvements in parameter selection for control of anomalous neural activity. Here we use a method to characterize dynamic controllability across consecutive effective connectivity (EC) networks based on regularized partial correlations between implanted electrodes during the onset, propagation, and termination regimes of 34 seizures. We estimate regularized partial correlation adjacency matrices from 1-s time windows of intracranial electrocorticography recordings using the Graphical Least Absolute Shrinkage and Selection Operator (GLASSO). Average and modal controllability metrics calculated from each resulting EC network track the time-varying controllability of the brain on an evolving landscape of conditionally dependent network interactions. We show that average controllability increases throughout a seizure and is negatively correlated with modal controllability throughout. Our results support the hypothesis that the energy required to drive the brain to a seizure-free state from an ictal state is smallest during seizure onset, yet we find that applying control energy at electrodes in the seizure onset zone may not always be energetically favorable. Our work suggests that a low-complexity model of time-evolving controllability may offer insights for developing and improving control strategies targeting seizure suppression.


Assuntos
Progressão da Doença , Rede Nervosa/patologia , Convulsões/patologia , Epilepsia/patologia , Humanos , Fatores de Tempo
9.
Nat Rev Neurosci ; 19(9): 566-578, 2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-30002509

RESUMO

Network theory provides an intuitively appealing framework for studying relationships among interconnected brain mechanisms and their relevance to behaviour. As the space of its applications grows, so does the diversity of meanings of the term network model. This diversity can cause confusion, complicate efforts to assess model validity and efficacy, and hamper interdisciplinary collaboration. In this Review, we examine the field of network neuroscience, focusing on organizing principles that can help overcome these challenges. First, we describe the fundamental goals in constructing network models. Second, we review the most common forms of network models, which can be described parsimoniously along the following three primary dimensions: from data representations to first-principles theory; from biophysical realism to functional phenomenology; and from elementary descriptions to coarse-grained approximations. Third, we draw on biology, philosophy and other disciplines to establish validation principles for these models. We close with a discussion of opportunities to bridge model types and point to exciting frontiers for future pursuits.


Assuntos
Encéfalo/fisiologia , Modelos Neurológicos , Neurociências/métodos , Animais , Humanos , Vias Neurais/fisiologia
10.
PLoS Comput Biol ; 18(6): e1010232, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35666708

RESUMO

[This corrects the article DOI: 10.1371/journal.pcbi.1007360.].

11.
Proc Natl Acad Sci U S A ; 117(32): 19556-19565, 2020 08 11.
Artigo em Inglês | MEDLINE | ID: mdl-32694207

RESUMO

Opioid addiction is a chronic, relapsing disorder associated with persistent changes in brain plasticity. Reconfiguration of neuronal connectivity may explain heightened abuse liability in individuals with a history of chronic drug exposure. To characterize network-level changes in neuronal activity induced by chronic opiate exposure, we compared FOS expression in mice that are morphine-naïve, morphine-dependent, or have undergone 4 wk of withdrawal from chronic morphine exposure, relative to saline-exposed controls. Pairwise interregional correlations in FOS expression data were used to construct network models that reveal a persistent reduction in connectivity strength following opiate dependence. Further, we demonstrate that basal gene expression patterns are predictive of changes in FOS correlation networks in the morphine-dependent state. Finally, we determine that regions of the hippocampus, striatum, and midbrain are most influential in driving transitions between opiate-naïve and opiate-dependent brain states using a control theoretic approach. This study provides a framework for predicting the influence of specific therapeutic interventions on the state of the opiate-dependent brain.


Assuntos
Encéfalo/fisiopatologia , Dependência de Morfina/fisiopatologia , Rede Nervosa/fisiopatologia , Analgésicos Opioides/administração & dosagem , Analgésicos Opioides/efeitos adversos , Animais , Encéfalo/efeitos dos fármacos , Encéfalo/metabolismo , Conectoma , Perfilação da Expressão Gênica , Regulação da Expressão Gênica , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Modelos Neurológicos , Morfina/administração & dosagem , Morfina/efeitos adversos , Dependência de Morfina/metabolismo , Rede Nervosa/efeitos dos fármacos , Rede Nervosa/metabolismo , Plasticidade Neuronal/genética , Proteínas Proto-Oncogênicas c-fos/genética , Proteínas Proto-Oncogênicas c-fos/metabolismo , Síndrome de Abstinência a Substâncias/genética , Síndrome de Abstinência a Substâncias/metabolismo , Síndrome de Abstinência a Substâncias/fisiopatologia
12.
Proc Natl Acad Sci U S A ; 117(1): 771-778, 2020 01 07.
Artigo em Inglês | MEDLINE | ID: mdl-31874926

RESUMO

The protracted development of structural and functional brain connectivity within distributed association networks coincides with improvements in higher-order cognitive processes such as executive function. However, it remains unclear how white-matter architecture develops during youth to directly support coordinated neural activity. Here, we characterize the development of structure-function coupling using diffusion-weighted imaging and n-back functional MRI data in a sample of 727 individuals (ages 8 to 23 y). We found that spatial variability in structure-function coupling aligned with cortical hierarchies of functional specialization and evolutionary expansion. Furthermore, hierarchy-dependent age effects on structure-function coupling localized to transmodal cortex in both cross-sectional data and a subset of participants with longitudinal data (n = 294). Moreover, structure-function coupling in rostrolateral prefrontal cortex was associated with executive performance and partially mediated age-related improvements in executive function. Together, these findings delineate a critical dimension of adolescent brain development, whereby the coupling between structural and functional connectivity remodels to support functional specialization and cognition.


Assuntos
Desenvolvimento do Adolescente/fisiologia , Córtex Cerebral/crescimento & desenvolvimento , Cognição/fisiologia , Função Executiva/fisiologia , Rede Nervosa/fisiologia , Adolescente , Córtex Cerebral/diagnóstico por imagem , Criança , Conectoma , Estudos Transversais , Imagem de Tensor de Difusão , Feminino , Humanos , Estudos Longitudinais , Masculino , Análise Espacial , Adulto Jovem
13.
Proc Natl Acad Sci U S A ; 117(13): 7430-7436, 2020 03 31.
Artigo em Inglês | MEDLINE | ID: mdl-32170019

RESUMO

Recent progress in deciphering mechanisms of human brain cortical folding leave unexplained whether spatially patterned genetic influences contribute to this folding. High-resolution in vivo brain MRI can be used to estimate genetic correlations (covariability due to shared genetic factors) in interregional cortical thickness, and biomechanical studies predict an influence of cortical thickness on folding patterns. However, progress has been hampered because shared genetic influences related to folding patterns likely operate at a scale that is much more local (<1 cm) than that addressed in prior imaging studies. Here, we develop methodological approaches to examine local genetic influences on cortical thickness and apply these methods to two large, independent samples. We find that such influences are markedly heterogeneous in strength, and in some cortical areas are notably stronger in specific orientations relative to gyri or sulci. The overall, phenotypic local correlation has a significant basis in shared genetic factors and is highly symmetric between left and right cortical hemispheres. Furthermore, the degree of local cortical folding relates systematically with the strength of local correlations, which tends to be higher in gyral crests and lower in sulcal fundi. The relationship between folding and local correlations is stronger in primary sensorimotor areas and weaker in association areas such as prefrontal cortex, consistent with reduced genetic constraints on the structural topology of association cortex. Collectively, our results suggest that patterned genetic influences on cortical thickness, measurable at the scale of in vivo MRI, may be a causal factor in the development of cortical folding.


Assuntos
Córtex Cerebral/anatomia & histologia , Córtex Cerebral/crescimento & desenvolvimento , Córtex Pré-Frontal/crescimento & desenvolvimento , Adulto , Idoso , Idoso de 80 Anos ou mais , Encéfalo/embriologia , Encéfalo/crescimento & desenvolvimento , Córtex Cerebral/metabolismo , Bases de Dados Factuais , Feminino , Humanos , Imageamento por Ressonância Magnética/métodos , Masculino , Pessoa de Meia-Idade , Córtex Pré-Frontal/anatomia & histologia
14.
Neuroimage ; 247: 118843, 2022 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-34952233

RESUMO

Adult cortex is organized into distributed functional communities. Yet, little is known about community architecture of children's brains. Here, we uncovered the community structure of cortex in childhood using fMRI data from 670 children aged 9-11 years (48% female, replication sample n=544, 56% female) from the Adolescent Brain and Cognitive Development study. We first applied a data-driven community detection approach to cluster cortical regions into communities, then employed a generative model-based approach called the weighted stochastic block model to further probe community interactions. Children showed similar community structure to adults, as defined by Yeo and colleagues in 2011, in early-developing sensory and motor communities, but differences emerged in transmodal areas. Children have more cortical territory in the limbic community, which is involved in emotion processing, than adults. Regions in association cortex interact more flexibly across communities, creating uncertainty for the model-based assignment algorithm, and perhaps reflecting cortical boundaries that are not yet solidified. Uncertainty was highest for cingulo-opercular areas involved in flexible deployment of cognitive control. Activation and deactivation patterns during a working memory task showed that both the data-driven approach and a set of adult communities statistically capture functional organization in middle childhood. Collectively, our findings suggest that community boundaries are not solidified by middle childhood.


Assuntos
Encéfalo/fisiologia , Conectoma/métodos , Imageamento por Ressonância Magnética/métodos , Encéfalo/crescimento & desenvolvimento , Criança , Cognição/fisiologia , Feminino , Humanos , Masculino , Memória de Curto Prazo/fisiologia , Modelos Neurológicos , Vias Neurais/crescimento & desenvolvimento , Vias Neurais/fisiologia
15.
Brain ; 144(8): 2486-2498, 2021 09 04.
Artigo em Inglês | MEDLINE | ID: mdl-33730163

RESUMO

Episodic memory is the ability to remember events from our past accurately. The process of pattern separation is hypothesized to underpin this ability and is defined as the capacity to orthogonalize memory traces, to maximize the features that make them unique. Contemporary cognitive neuroscience suggests that pattern separation entails complex interactions between the hippocampus and neocortex, where specific hippocampal subregions shape neural reinstatement in the neocortex. To test this hypothesis, the current work studied both healthy controls and patients with temporal lobe epilepsy who presented with hippocampal structural anomalies. We measured neural activity in all participants using functional MRI while they retrieved memorized items or lure items, which shared features with the target. Behaviourally, patients with temporal lobe epilepsy were less able to exclude lures than controls and showed a reduction in pattern separation. To assess the hypothesized relationship between neural patterns in the hippocampus and neocortex, we identified the topographic gradients of intrinsic connectivity along neocortical and hippocampal subfield surfaces and determined the topographic profile of the neural activity accompanying pattern separation. In healthy controls, pattern separation followed a graded topography of neural activity, both along the hippocampal long axis (and peaked in anterior segments that are more heavily engaged in transmodal processing) and along the neocortical hierarchy running from unimodal to transmodal regions (peaking in transmodal default mode regions). In patients with temporal lobe epilepsy, however, this concordance between task-based functional activations and topographic gradients was markedly reduced. Furthermore, person-specific measures of concordance between task-related activity and connectivity gradients in patients and controls were related to inter-individual differences in behavioural measures of pattern separation and episodic memory, highlighting the functional relevance of the observed topographic motifs. Our work is consistent with an emerging understanding that successful discrimination between memories with similar features entails a shift in the locus of neural activity away from sensory systems, a pattern that is mirrored along the hippocampal long axis and with respect to neocortical hierarchies. More broadly, our study establishes topographic profiling using intrinsic connectivity gradients, capturing the functional underpinnings of episodic memory processes in a manner that is sensitive to their reorganization in pathology.


Assuntos
Encéfalo/diagnóstico por imagem , Cognição/fisiologia , Epilepsia do Lobo Temporal/diagnóstico por imagem , Memória Episódica , Adulto , Conectoma , Feminino , Lateralidade Funcional/fisiologia , Humanos , Processamento de Imagem Assistida por Computador , Imageamento por Ressonância Magnética , Masculino , Testes Neuropsicológicos , Adulto Jovem
16.
Child Dev ; 93(2): e222-e236, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-34904237

RESUMO

Children's behavior changes from day to day, but the factors that contribute to its variability are understudied. We developed a novel repeated measures paradigm to study children's persistence by capitalizing on a task that children complete every day: toothbrushing (N = 81; 48% female; 36-47 months; 80% white, 14% Multiracial, 10% Hispanic, 2% Asian, 1% Black; 1195 observations collected between January 2019 and March 2020). Children brushed longer on days when their parents used more praise (d = .23) and less instruction (d = -.22). Sensitivity to mood, sleep, and parent stress varied across children, suggesting that identifying the factors that shape an individual child's persistence could lead to personalized interventions.


Assuntos
Pais , Sono , Afeto , Povo Asiático , Criança , Pré-Escolar , Feminino , Hispânico ou Latino , Humanos , Masculino
17.
J Neurosci ; 40(36): 6949-6968, 2020 09 02.
Artigo em Inglês | MEDLINE | ID: mdl-32732324

RESUMO

Functional connectivity (FC) studies have identified at least two large-scale neural systems that constitute cognitive control networks, the frontoparietal network (FPN) and cingulo-opercular network (CON). Control networks are thought to support goal-directed cognition and behavior. It was previously shown that the FPN flexibly shifts its global connectivity pattern according to task goal, consistent with a "flexible hub" mechanism for cognitive control. Our aim was to build on this finding to develop a functional cartography (a multimetric profile) of control networks in terms of dynamic network properties. We quantified network properties in (male and female) humans using a high-control-demand cognitive paradigm involving switching among 64 task sets. We hypothesized that cognitive control is enacted by the FPN and CON via distinct but complementary roles reflected in network dynamics. Consistent with a flexible "coordinator" mechanism, FPN connections were varied across tasks, while maintaining within-network connectivity to aid cross-region coordination. Consistent with a flexible "switcher" mechanism, CON regions switched to other networks in a task-dependent manner, driven primarily by reduced within-network connections to other CON regions. This pattern of results suggests FPN acts as a dynamic, global coordinator of goal-relevant information, while CON transiently disbands to lend processing resources to other goal-relevant networks. This cartography of network dynamics reveals a dissociation between two prominent cognitive control networks, suggesting complementary mechanisms underlying goal-directed cognition.SIGNIFICANCE STATEMENT Cognitive control supports a variety of behaviors requiring flexible cognition, such as rapidly switching between tasks. Furthermore, cognitive control is negatively impacted in a variety of mental illnesses. We used tools from network science to characterize the implementation of cognitive control by large-scale brain systems. This revealed that two systems, the frontoparietal (FPN) and cingulo-opercular (CON) networks, have distinct but complementary roles in controlling global network reconfigurations. The FPN exhibited properties of a flexible coordinator (orchestrating task changes), while CON acted as a flexible switcher (switching specific regions to other systems to lend processing resources). These findings reveal an underlying distinction in cognitive processes that may be applicable to clinical, educational, and machine learning work targeting cognitive flexibility.


Assuntos
Conectoma , Função Executiva , Adulto , Córtex Cerebral/fisiologia , Cognição , Feminino , Objetivos , Humanos , Masculino
18.
Neuroimage ; 240: 118369, 2021 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-34242784

RESUMO

There is growing interest in how neuromodulators shape brain networks. Recent neuroimaging studies provide evidence that brainstem arousal systems, such as the locus coeruleus-norepinephrine system (LC-NE), influence functional connectivity and brain network topology, suggesting they have a role in flexibly reconfiguring brain networks in order to adapt behavior and cognition to environmental demands. To date, however, the relationship between brainstem arousal systems and functional connectivity has not been assessed within the context of a task with an established relationship between arousal and behavior, with most prior studies relying on incidental variations in arousal or pharmacological manipulation and static brain networks constructed over long periods of time. These factors have likely contributed to a heterogeneity of effects across studies. To address these issues, we took advantage of the association between LC-NE-linked arousal and exploration to probe the relationships between exploratory choice, arousal-as measured indirectly via pupil diameter-and brain network dynamics. Exploration in a bandit task was associated with a shift toward fewer, more weakly connected modules that were more segregated in terms of connectivity and topology but more integrated with respect to the diversity of cognitive systems represented in each module. Functional connectivity strength decreased, and changes in connectivity were correlated with changes in pupil diameter, in line with the hypothesis that brainstem arousal systems influence the dynamic reorganization of brain networks. More broadly, we argue that carefully aligning dynamic network analyses with task designs can increase the temporal resolution at which behaviorally- and cognitively-relevant modulations can be identified, and offer these results as a proof of concept of this approach.


Assuntos
Nível de Alerta/fisiologia , Encéfalo/fisiologia , Comportamento Exploratório/fisiologia , Rede Nervosa/fisiologia , Desempenho Psicomotor/fisiologia , Pupila/fisiologia , Encéfalo/diagnóstico por imagem , Feminino , Humanos , Imageamento por Ressonância Magnética/métodos , Masculino , Rede Nervosa/diagnóstico por imagem , Estimulação Luminosa/métodos , Adulto Jovem
19.
Neuroimage ; 241: 118408, 2021 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-34284108

RESUMO

Functional connectivity (FC) networks are typically inferred from resting-state fMRI data using the Pearson correlation between BOLD time series from pairs of brain regions. However, alternative methods of estimating functional connectivity have not been systematically tested for their sensitivity or robustness to head motion artifact. Here, we evaluate the sensitivity of eight different functional connectivity measures to motion artifact using resting-state data from the Human Connectome Project. We report that FC estimated using full correlation has a relatively high residual distance-dependent relationship with motion compared to partial correlation, coherence, and information theory-based measures, even after implementing rigorous methods for motion artifact mitigation. This disadvantage of full correlation, however, may be offset by higher test-retest reliability, fingerprinting accuracy, and system identifiability. FC estimated by partial correlation offers the best of both worlds, with low sensitivity to motion artifact and intermediate system identifiability, with the caveat of low test-retest reliability and fingerprinting accuracy. We highlight spatial differences in the sub-networks affected by motion with different FC metrics. Further, we report that intra-network edges in the default mode and retrosplenial temporal sub-networks are highly correlated with motion in all FC methods. Our findings indicate that the method of estimating functional connectivity is an important consideration in resting-state fMRI studies and must be chosen carefully based on the parameters of the study.


Assuntos
Artefatos , Encéfalo/diagnóstico por imagem , Imageamento por Ressonância Magnética/normas , Movimento (Física) , Rede Nervosa/diagnóstico por imagem , Descanso , Encéfalo/fisiologia , Análise de Dados , Movimentos da Cabeça/fisiologia , Humanos , Imageamento por Ressonância Magnética/métodos , Rede Nervosa/fisiologia , Descanso/fisiologia
20.
Neuroimage ; 225: 117510, 2021 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-33160087

RESUMO

Alterations in the structural connectome of schizophrenia patients have been widely characterized, but the mechanisms remain largely unknown. Generative network models have recently been introduced as a tool to test the biological underpinnings of altered brain network formation. We evaluated different generative network models in healthy controls (n=152), schizophrenia patients (n=66), and their unaffected first-degree relatives (n=32), and we identified spatial and topological factors contributing to network formation. We further investigated how these factors relate to cognition and to polygenic risk for schizophrenia. Our data show that among the four tested classes of generative network models, structural brain networks were optimally accounted for by a two-factor model combining spatial constraints and topological neighborhood structure. The same wiring model explained brain network formation across study groups. However, relatives and schizophrenia patients exhibited significantly lower spatial constraints and lower topological facilitation compared to healthy controls. Further exploratory analyses point to potential associations of the model parameter reflecting spatial constraints with the polygenic risk for schizophrenia and cognitive performance. Our results identify spatial constraints and local topological structure as two interrelated mechanisms contributing to regular brain network formation as well as altered connectomes in schizophrenia and healthy individuals at familial risk for schizophrenia. On an exploratory level, our data further point to the potential relevance of spatial constraints for the genetic risk for schizophrenia and general cognitive functioning, thereby encouraging future studies in following up on these observations to gain further insights into the biological basis and behavioral relevance of model parameters.


Assuntos
Encéfalo/diagnóstico por imagem , Família , Esquizofrenia/diagnóstico por imagem , Adulto , Encéfalo/fisiopatologia , Estudos de Casos e Controles , Conectoma , Imagem de Tensor de Difusão , Feminino , Predisposição Genética para Doença , Humanos , Masculino , Vias Neurais/diagnóstico por imagem , Vias Neurais/fisiopatologia , Testes Neuropsicológicos , Análise de Componente Principal , Esquizofrenia/genética , Esquizofrenia/fisiopatologia , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA