Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
FASEB J ; 36(1): e22108, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34939697

RESUMO

Excessive rapid increases in cytosolic free Ca2+ have a clear association with the induction of cancer cell death. Whereas, characterizing the Ca2+ signaling events that occur during the progression of the apoptotic cascade over a period of hours or days, has not yet been possible. Now using genetically encoded Ca2+ indicators complemented with automated epifluorescence microscopy we have shown that staurosporine-induced apoptosis in MDA-MB-231 breast cancer cells was associated with delayed development of cytosolic free Ca2+ fluctuations, which were then maintained for 24 h. These cytosolic free Ca2+ fluctuations were dependent on the Ca2+ channel ORAI1. Silencing of ORAI1, but not its canonical activators STIM1 and STIM2, promoted apoptosis in this model. The pathway for this regulation implicates a mechanism previously associated with the migration of cancer cells involving ORAI1, the chaperone protein SigmaR1, and Ca2+ -activated K+ channels.


Assuntos
Apoptose , Neoplasias da Mama/metabolismo , Sinalização do Cálcio , Cálcio/metabolismo , Proteínas de Neoplasias/metabolismo , Proteína ORAI1/metabolismo , Molécula 1 de Interação Estromal/metabolismo , Neoplasias da Mama/genética , Linhagem Celular Tumoral , Feminino , Humanos , Proteínas de Neoplasias/genética , Proteína ORAI1/genética , Molécula 1 de Interação Estromal/genética
2.
Biochem Biophys Res Commun ; 522(2): 532-538, 2020 02 05.
Artigo em Inglês | MEDLINE | ID: mdl-31780263

RESUMO

Triple-negative breast cancers (TNBC) are often associated with high relapse rates, despite treatment with chemotherapy agents such as doxorubicin. A better understanding of the signaling and molecular changes associated with doxorubicin may provide novel insights into strategies to enhance treatment efficacy. Calcium signaling is involved in many pathways influencing the efficacy of chemotherapy agents such as proliferation and cell death. However, there are a limited number of studies exploring the effect of doxorubicin on calcium signaling in TNBC. In this study, MDA-MB-231 triple-negative, basal breast cancer cells stably expressing the genetically-encoded calcium indicator GCaMP6m (GCaMP6m-MDA-MB-231) were used to define alterations in calcium signaling. The effects of doxorubicin in GCaMP6m-MDA-MB-231 cells were determined using live cell imaging and fluorescence microscopy. Changes in mRNA levels of specific calcium regulating proteins as a result of doxorubicin treatment were also assessed using real time qPCR. Doxorubicin (1 µM) produced alterations in intracellular calcium signaling, including enhancing the sensitivity of MDA-MB-231 cells to ATP stimulation and prolonging the recovery time after store-operated calcium entry. Upregulation in mRNA levels of ORAI1, TRPC1, SERCA1, IP3R2 and PMCA2 with doxorubicin 1 µM treatment was also observed. Doxorubicin treatment is associated with specific remodeling in calcium signaling in MDA-MB-231 cells, with associated changes in mRNA levels of specific calcium-regulating proteins.


Assuntos
Neoplasias da Mama/metabolismo , Sinalização do Cálcio/efeitos dos fármacos , Cálcio/metabolismo , Doxorrubicina/farmacologia , Proteínas de Neoplasias/metabolismo , Trifosfato de Adenosina/farmacologia , Canais de Cálcio/metabolismo , Linhagem Celular Tumoral , Feminino , Homeostase/efeitos dos fármacos , Humanos , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Regulação para Cima/efeitos dos fármacos
3.
Cell Calcium ; 72: 39-50, 2018 06.
Artigo em Inglês | MEDLINE | ID: mdl-29748132

RESUMO

Alterations in Ca2+ signaling can regulate key cancer hallmarks such as proliferation, invasiveness and resistance to cell death. Changes in the regulation of intracellular Ca2+ and specific components of Ca2+ influx are a feature of several cancers and/or cancer subtypes, including the basal-like breast cancer subtype, which has a poor prognosis. The development of genetically encoded calcium indicators, such as GCaMP6, represents an opportunity to measure changes in intracellular free Ca2+ during processes relevant to breast cancer progression that occur over long periods (e.g. hours), such as cell death. This study describes the development of a MDA-MB-231 breast cancer cell line stably expressing GCaMP6m. The cell line retained the key features of this aggressive basal-like breast cancer cell line. Using this model, we defined alterations in relative cytosolic free Ca2+ ([Ca2+]CYT) when the cells were treated with C2-ceramide. Cell death was measured simultaneously via assessment of propidium iodide permeability. Treatment with ceramide produced delayed and heterogeneous sustained increases in [Ca2+]CYT. Where cell death occurred, [Ca2+]CYT increases preceded cell death. The sustained increases in [Ca2+]CYT were not related to the rapid morphological changes induced by ceramide. Silencing of the plasma membrane Ca2+ ATPase isoform 1 (PMCA1) was associated with an augmentation in ceramide-induced increases in [Ca2+]CYT and also cell death. This work demonstrates the utility of GCaMP6 Ca2+ indicators for investigating [Ca2+]CYT changes in breast cancer cells during events relevant to tumor progression, which occur over hours rather than minutes.


Assuntos
Neoplasias da Mama/metabolismo , Cálcio/metabolismo , Ceramidas/farmacologia , Citosol/metabolismo , Neoplasias da Mama/genética , Neoplasias da Mama/patologia , Morte Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Receptores ErbB/genética , Receptores ErbB/metabolismo , Receptor alfa de Estrogênio/genética , Receptor alfa de Estrogênio/metabolismo , Feminino , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Humanos , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Receptor ErbB-2/genética , Receptor ErbB-2/metabolismo , Transfecção
4.
Adv Pharmacol ; 79: 141-171, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28528667

RESUMO

The calcium ion (Ca2+) is an important signaling molecule implicated in many cellular processes, and the remodeling of Ca2+ homeostasis is a feature of a variety of pathologies. Typical methods to assess Ca2+ signaling in cells often employ small molecule fluorescent dyes, which are sometimes poorly suited to certain applications such as assessment of cellular processes, which occur over long periods (hours or days) or in vivo experiments. Genetically encoded calcium indicators are a set of tools available for the measurement of Ca2+ changes in the cytosol and subcellular compartments, which circumvent some of the inherent limitations of small molecule Ca2+ probes. Recent advances in genetically encoded calcium sensors have greatly increased their ability to provide reliable monitoring of Ca2+ changes in mammalian cells. New genetically encoded calcium indicators have diverse options in terms of targeting, Ca2+ affinity and fluorescence spectra, and this will further enhance their potential use in high-throughput drug discovery and other assays. This review will outline the methods available for Ca2+ measurement in cells, with a focus on genetically encoded calcium sensors. How these sensors will improve our understanding of the deregulation of Ca2+ handling in disease and their application to high-throughput identification of drug leads will also be discussed.


Assuntos
Canais de Cálcio/metabolismo , Cálcio/metabolismo , Descoberta de Drogas/métodos , Animais , Corantes Fluorescentes/administração & dosagem , Humanos , Transdução de Sinais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA