Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Cancer Commun (Lond) ; 44(5): 521-553, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38551889

RESUMO

Tumors can be classified into distinct immunophenotypes based on the presence and arrangement of cytotoxic immune cells within the tumor microenvironment (TME). Hot tumors, characterized by heightened immune activity and responsiveness to immune checkpoint inhibitors (ICIs), stand in stark contrast to cold tumors, which lack immune infiltration and remain resistant to therapy. To overcome immune evasion mechanisms employed by tumor cells, novel immunologic modulators have emerged, particularly ICIs targeting cytotoxic T-lymphocyte-associated protein 4 (CTLA-4) and programmed cell death protein 1/programmed death-ligand 1(PD-1/PD-L1). These agents disrupt inhibitory signals and reactivate the immune system, transforming cold tumors into hot ones and promoting effective antitumor responses. However, challenges persist, including primary resistance to immunotherapy, autoimmune side effects, and tumor response heterogeneity. Addressing these challenges requires innovative strategies, deeper mechanistic insights, and a combination of immune interventions to enhance the effectiveness of immunotherapies. In the landscape of cancer medicine, where immune cold tumors represent a formidable hurdle, understanding the TME and harnessing its potential to reprogram the immune response is paramount. This review sheds light on current advancements and future directions in the quest for more effective and safer cancer treatment strategies, offering hope for patients with immune-resistant tumors.


Assuntos
Neoplasias , Microambiente Tumoral , Humanos , Microambiente Tumoral/imunologia , Neoplasias/imunologia , Neoplasias/terapia , Inibidores de Checkpoint Imunológico/uso terapêutico , Imunoterapia/métodos , Animais
2.
Immunol Res ; 71(2): 153-163, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36396903

RESUMO

Myasthenia gravis (MG) is a type of muscle paralysis created by immune responses against acetylcholine receptor proteins in neuromuscular synapses. This disease is characterized by muscle weakness, especially ocular weakness symptoms that could be ptosis (fall of the upper eyelid) or diplopia (double vision of a single object). Some patients also identified with speech and swallowing problems. The main goals of MG therapeutic approaches are to achieve remission, reduce symptoms, and improve life quality. Recently, other studies have revealed the potential role of various microRNAs (miRNAs) in the development of MG through different mechanisms and have proposed these molecules as effective biomarkers for the treatment of MG. This review was aimed at providing an overview of the critical regulatory roles of various miRNAs in the pathogenesis of this autoimmune disease focusing on human MG studies and the interaction between different miRNAs with important cytokines and immune cells during the development of this autoimmune disease.


Assuntos
MicroRNAs , Miastenia Gravis , Humanos , MicroRNAs/genética , Citocinas , Miastenia Gravis/genética , Receptores Colinérgicos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA