Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 74
Filtrar
1.
Environ Res ; 249: 118426, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38342202

RESUMO

The advancement and engineering of novel crystalline materials is facilitated through the utilization of innovative porous crystalline structures, established via KOH-treated monolithic graphene oxide frameworks. These materials exhibit remarkable and versatile characteristics for both functional exploration and applications within the realm of CO2 capture. In this comprehensive study, we have synthesized monolithic reduced graphene oxide-based adsorbents through a meticulous self-assembly process involving different mass ratios of GO/malic acid (MaA) (1:0.250, 1:0.500, and 1:1 by weight). Building upon this foundation, we further modified MGO 0.250 through KOH-treatment by chloroacetic acid method, leading to the creation of MGO 0.250_KOH, which was subjected to CO2 capture assessments. The comprehensive investigation encompassed an array of parameters including morphology, specific surface area, crystal defects, functional group identification, and CO2 capture efficiency. Employing a combination of FT-IR, XRD, Raman, BET, SEM, HR-TEM, and XPS techniques, the study revealed profound insights. Particularly notable was the observation that the MGO 0.250_KOH adsorbent exhibited an exceptional CO2 capture performance, leading to a significant enhancement of the CO2 capture capacity from 1.69 mmol g-1 to 2.35 mmol g-1 at standard conditions of 25 °C and 1 bar pressure. This performance enhancement was concomitant with an augmentation in surface area, elevating from 287.93 to 419.75 m2 g-1 (a nearly 1.5-fold increase compared to MGO 1.000 with a surface area of 287.93 m2 g-1). The monolithic adsorbent demonstrated a commendable production yield of 82.92%, along with an impressive regenerability of 98.80% at 100 °C. Additionally, adsorbent's proficiency in CO2 adsorption, rendering it a promising candidate for post-combustion CO2 capture applications. These findings collectively underscore the capacity adsorbents to significantly amplify CO2 capture capabilities. The viability of employing this strategy as an uncomplicated pre-treatment technique in various industrial sectors is a plausible prospect, given the study's outcomes.


Assuntos
Dióxido de Carbono , Grafite , Grafite/química , Dióxido de Carbono/química , Adsorção , Porosidade
2.
Environ Res ; 250: 118503, 2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38367840

RESUMO

Existing fossil-based commercial products present a significant threat to the depletion of global natural resources and the conservation of the natural environment. Also, the ongoing generation of waste is giving rise to challenges in waste management. Conventional practices for the management of waste, for instance, incineration and landfilling, emit gases that contribute to global warming. Additionally, the need for energy is escalating rapidly due to the growing populace and industrialization. To address this escalating desire in a sustainable manner, access to clean and renewable sources of energy is imperative for long-term development of mankind. These interrelated challenges can be effectively tackled through the scientific application of biowaste-to-bioenergy technologies. The current article states an overview of the strategies and current status of these technologies, including anaerobic digestion, transesterification, photobiological hydrogen production, and alcoholic fermentation which are utilized to convert diverse biowastes such as agricultural and forest residues, animal waste, and municipal waste into bioenergy forms like bioelectricity, biodiesel, bio alcohol, and biogas. The successful implementation of these technologies requires the collaborative efforts of government, stakeholders, researchers, and scientists to enhance their practicability and widespread adoption.


Assuntos
Biocombustíveis , Gerenciamento de Resíduos/métodos , Conservação dos Recursos Naturais/métodos , Desenvolvimento Sustentável
3.
J Environ Manage ; 370: 122403, 2024 Sep 07.
Artigo em Inglês | MEDLINE | ID: mdl-39244933

RESUMO

This study focuses on developing a g-C3N4/Sb2S3 heterojunction photocatalyst with different g-C3N4 to Sb2S3 weight ratios (1:1, 1:3, and 3:1) for degrading tetracycline (TC) pollutants. The 1:3 ratio (13 GS) exhibited optimal photocatalytic performance, achieving 99% TC degradation under sunlight within 120 min, compared to 78.4% under visible light and 38% under UV light. The 13 GS catalyst demonstrated strong reusability, maintaining 80% degradation efficiency after six cycles. Scavenger experiments identified hydroxyl radicals as crucial for TC degradation, with DMSO reducing activity by 30%. The photocatalyst also showed high hydrogen production with an apparent quantum efficiency (AQE) of 19.8% under standard conditions, and improved AQE in acidic (23%) and basic (22.7%) conditions, and with CH3OH (23.2%). This g-C3N4/Sb2S3 heterojunction offers a promising solution for degrading toxic contaminants and has the potential for solar-powered applications.

4.
Nanotechnology ; 34(50)2023 Oct 04.
Artigo em Inglês | MEDLINE | ID: mdl-37708885

RESUMO

The paper critically addresses two contemporary environmental challenges, the water crisis and the unrestricted discharge of organic pollutants in waterways together. An eco-friendly method was used to fabricate a cellulose/g-C3N4/TiO2photocatalytic composite that displayed a remarkable degradation of methylene blue dye and atenolol drug under natural sunlight. Introducing graphitic carbon nitride (g-C3N4) onto pristine TiO2improved hybrid material's photonic efficacy and enhanced interfacial charge separation. Furthermore, immobilizing TiO2/g-C3N4on a semi-interpenetrating cellulose matrix promoted photocatalyst recovery and its reuse, ensuring practical affordability. Under optimized conditions, the nano-photocatalyst exhibited ∼95% degradation of both contaminants within two hours while retaining ∼55% activity after ten cycles demonstrating a promising photostability. The nano-photocatalyst caused 66% and 57% reduction in COD and TOC values in industrial wastewater containing these pollutants. The photocatalysis was fitted to various models to elucidate the degradation kinetics, while LC-MS results suggested the mineralization pathway of dye majorly via ring opening demethylation. >98% disinfection was achieved againstE. coli(104-105CFU·ml-1) contaminated water. This study thus paves multifaceted strategies to treat wastewater contaminants at environmental levels employing nano-photocatalysis.

5.
J Environ Manage ; 336: 117570, 2023 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-36907064

RESUMO

Carbon nitride materials are one of the potential candidates for photocatalytic application. The present work demonstrates the fabrication of C3N5 catalyst from a simple, low-cost, and easily available nitrogen-containing precursor, melamine. The facile and microwave mediated method was used to prepare novel MoS2/C3N5 composites (referred to as MC) with varying weight ratios (1:1, 1:3, and 3:1). This work provided a novel strategy to improve photocatalytic activity and accordingly fabricated a potential material for effective removal of organic contaminants from water. XRD and FT-IR results affirms the cryatalinity and successful formation of the composites. The elemental composition/distribution was analysed via EDS and color mapping. The elemental oxidation state and successful charge migration in hetrostructure was confirmed by XPS findings. The catalyst's surface morphology indicates tiny MoS2 nanopetals dispersed throughout C3N5 sheets, while BET studies revealed its high surface area (34.7 m2/g). The MC catalysts were highly active in visiblelight, with an energy band gap value of 2.01 eV and a lowered recombination of charges. Because of the strong synergistic relationship (2.19) in the hybrid, excellent activity for methylene blue (MB) dye (88.9%; 0.0157 min-1) and fipronil (FIP) photodegradation (85.3%; 0.0175 min-1) with MC (3:1) catalyst under visible-light irradiation was obtained. Investigations were carried out on the effect of catalyst quantity, pH, and effectual illumination area on photoactivity. Post-photocatalytic assessment verified the high re-useable character of the catalyst with a high degradation (63% (5 mg/L MB) and 54% (600 mg/L FIP)) after five cycles. The trapping investigations demonstrated that superoxide radicals and holes were intimately enrolled in the degradation activity. Remarkable removal rates of COD (68.4%) and TOC (53.1%) demonstrate excellent photocatalytic removal of practical wastewater even without any preliminary processes. The new study, when paired with previous research, demonstrates the real-world perspective of these novel MC composites for the elimination of refractory contaminants.


Assuntos
Poluentes Ambientais , Molibdênio , Espectroscopia de Infravermelho com Transformada de Fourier , Luz , Água
6.
J Environ Manage ; 313: 114916, 2022 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-35367674

RESUMO

Artificially simulated photosynthesis has created substantial curiosity as the majority of efforts in this arena have been aimed to upsurge solar fuel efficiencies for commercialization. The layered inorganic 2D nanosheets offer considerably higher tunability of their chemical surface, physicochemical properties and catalytic activity. Despites the intrinsic advantages of such metal-based materials viz., metal oxides, transition metal dichalcogenides, metal oxyhalides, metal organic frameworks, layered double hydroxide, MXene's, boron nitride, black phosphorous and perovskites, studies on such systems are limited for applications in photocatalytic CO2 reduction. The role of metal-based layers for CO2 conversion and new strategies such as surface modifications, defect generation and heterojunctions to optimize their functionalities are discussed in this review. Research prospects and technical challenges for future developments of layered 2D metal-based nanomaterials are critically discussed.


Assuntos
Estruturas Metalorgânicas , Nanoestruturas , Dióxido de Carbono , Metais , Nanoestruturas/química , Luz Solar
7.
J Environ Manage ; 302(Pt A): 113963, 2022 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-34700079

RESUMO

The production of hydrogen, its separation, and storage for use as a primary source of energy is an important component of the green energy economy of the world. Hydrogen is a potential non-carbon-based energy source, which is gradually replacing the dependency on fossil fuels. It is anticipated that as the alternative fuel since hydrogen can be produced from green and clean sources. The evolution of hydrogen from renewable and non-renewable sources by various technologies has now gained tremendous research and industrial interest. The most appropriate methods for hydrogen generation involve the direct conversion of solar energy, exploitation of solar and wind energy for the electrolysis of water, besides conversion of fuel and biomass. To produce cleaner hydrogen and its separation from the chemical impurities is crucial and several methods including photobiological, photoelectrochemical, electrochemical, photocatalytic, thermochemical, thermolysis, and steam gasification have been used. The diverse types of membranes along with the pressure gas swing adsorption technique is another technique used to separate hydrogen, but the storage of hydrogen in an inexpensive, safe, compact, and environmentally friendly manner is one of the major concerns contributing to the country's economy. Apart from the countless advantages, storage and handling of hydrogen is a serious concern. Owing to its high inflammability, enough safety measures should be adopted during its production and storage as a fuel. It is necessary to provide information regarding the production technologies, storage, and separation methods of hydrogen and the present review addresses these issues.


Assuntos
Hidrogênio , Energia Solar , Biomassa , Fontes Geradoras de Energia , Vapor
8.
Chem Eng J ; 408: 127317, 2021 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-34017217

RESUMO

Microplastics (MPs) with sizes < 5 mm are found in various compositions, shapes, morphologies, and textures that are the major sources of environmental pollution. The fraction of MPs in total weight of plastic accumulation around the world is predicted to be 13.2% by 2060. These micron-sized MPs are hazardous to marine species, birds, animals, soil creatures and humans due to their occurrence in air, water, soil, indoor dust and food items. The present review covers discussions on the damaging effects of MPs on the environment and their removal techniques including biodegradation, adsorption, catalytic, photocatalytic degradation, coagulation, filtration and electro-coagulation. The main techniques used to analyze the structural and surface changes such as cracks, holes and erosion post the degradation processes are FTIR and SEM analysis. In addition, reduction in plastic molecular weight by the microbes implies disintegration of MPs. Adsorptive removal by the magnetic adsorbent promises complete elimination while the biodegradable catalysts could remove 70-100% of MPs. Catalytic degradation via advanced oxidation assisted by S O 4 • - or O H • radicals generated by peroxymonosulfate or sodium sulfate are also adequately covered in addition to photocatalysis. The chemical methods such as sol-gel, agglomeration, and coagulation in conjunction with other physical methods are discussed concerning the drinking water/wastewater/sludge treatments. The efficacy, merits and demerits of the currently used removal approaches are reviewed that will be helpful in developing more sophisticated technologies for the complete mitigation of MPs from the environment.

9.
Chem Eng J ; 421(1)2021 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-34504393

RESUMO

Microplastics (MPs) and nanoplastics (NPs) have gained much attention in recent years because of their ubiquitous presence, which is the widely acknowledged threat to the environment. MPs can be <5 mm size, while NPs are <100 nm, and both can be detected in various forms and shapes in the environment to alleviate their harmful effects on aquatic species, soil organisms, birds, and humans. In efforts to address these issues, the present review discusses about sampling methods for water, sediments, and biota along with their merits and demerits. Various identification techniques such as FTIR, Raman, ToF-SIMS, MALDI TOF MS, and ICP-MS are critically discussed. The detrimental effects caused by MPs and NPs are discussed critically along with the efficient and cost-effective treatment processes including membrane technologies in order to remove plastics particles from various sources to mitigate their environmental pollution and risk assessment.

10.
J Environ Manage ; 274: 111208, 2020 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-32814213

RESUMO

Photodegradation of toxic pollutants is a promising approach to deal with wastewater management. In this regard, MoS2/g-C3N4 (MSC) derived composites with varying weight-ratios were prepared via fast (30 min) one step microwave-assisted method. The materials were characterized by XRD, XPS, EDS, FESEM and HRTEM to validate their flower-like and sheet-like morphologies. The PL and UV-vis DRS spectra exhibited low recombination-rate and band-gap (1.7 eV), which is appropriate for an effective visible-light degradation. Photocatalytic performance of the catalysts was analyzed by investigating the degradation of methylene blue (MB) as well as pesticide fipronil. Best results were obtained by 5:1 MSC (98.7% degradation efficacy; rate constant 0.0261 min-1) in 80 min under the sunlight. The effects of solution pH, catalyst-dose, scavengers and illumination-area were also explored. The catalyst was reusable as confirmed by degradation studies (~82% efficiency) even after 5-cycles. The photocatalytic treatment of real industrial-wastewater was also conducted. The TOC and COD analysis validated that the treatment by as-prepared catalyst is more proficient for effluent-treatment than the industrial physico-chemical treatments. Electrochemical degradation of MB was also investigated using the glassy carbon electrode modified with different MSC-ratios. The electrode modified with 5:1 MSC at pH 7 manifested the maximum peak current. The plausible mechanisms for photocatalytic and electrochemical degradations were proposed, which suggested the remarkable potential the prepared nanocomposites for wastewater treatment.


Assuntos
Poluentes Ambientais , Molibdênio , Catálise , Luz , Fotólise
11.
J Environ Manage ; 273: 111096, 2020 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-32734892

RESUMO

Environmental sustainability criteria and rising energy demands, exhaustion of conventional resources of energy followed by environmental degradation due to abrupt climate changes have shifted the attention of scientists to seek renewable sources of green and clean energy for sustainable development. Bioenergy is an excellent alternative since it can be applied for several energy-requirements after utilizing suitable conversion methodology. This review elucidates all aspects of biofuels (bioethanol, biodiesel, and butanol) and their sustainability criteria. The principal focus is on the latest developments in biofuel production chiefly stressing on the role of nanotechnology. A plethora of investigations regarding the emerging techniques for process improvement like integration methods, less energy-intensive distillation techniques, and bioengineering of microorganisms are discussed. This can assist in making biofuel-production in a real-world market more economically and environmentally viable.


Assuntos
Biocombustíveis , Microalgas , Bioengenharia , Biotecnologia , Conservação dos Recursos Naturais
12.
J Environ Manage ; 250: 109457, 2019 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-31472376

RESUMO

Nitrogen and oxygen enriched carbons were prepared by the cost-effective synthesis route of carbonization of polyacrylonitrile (PAN) and subsequent KOH activation for CO2 capture. The effect of four impregnation mass ratios (KOH: PAN = 1-4) and activation temperatures (600-900 °C) on the synthesized carbon adsorbent properties was explored by different analyses. The X-ray photoelectron spectroscopy (XPS) revealed the existence of basic nitrogen and oxygen functionalities on the adsorbent's surface which increases the adsorption rate for CO2 by providing its basic sites. By increasing mass ratio (KOH:PAN) from 1:1 to 3:1, the surface area increased from 1152.4 to 1884.2 m2 g-1 and the dynamic CO2 adsorption capacity also increased from 2.1 to 2.5 mmol g-1 respectively, at 30 °C (approximately ten times the adsorption capacity of untreated PAN, 0.22 mmol g-1). Physisorption and exothermic nature of the process were confirmed by the decrease in the adsorption capacity of the adsorbents with the increase in adsorption temperature. Moreover, good cyclic stability and regenerability over 5 adsorption-desorption cycles were obtained for the adsorbents. The fractional order kinetic and Temkin isotherm models fitted best with the adsorption data. A heterogeneous interaction between CO2 and the surface of adsorbents was suggested by the isosteric heat of adsorption values. Combined with the simple method for the preparation of activated carbon adsorbents, efficient CO2 adsorption and excellent regeneration make it appropriate adsorbents for post-combustion CO2 capture.


Assuntos
Dióxido de Carbono , Carvão Vegetal , Adsorção , Cinética , Nitrogênio
13.
J Environ Manage ; 250: 109486, 2019 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-31518793

RESUMO

Energy and water are the two major issues facing the modern mankind. Providing freshwater requires energy and producing energy uses water. In the present-day scenario, both these routes face growing problems and limitations. Energy crisis has risen due to the depletion of fossil fuels that cause pollution to water bodies making the water unusable for human consumption. In this regard, semiconductor nanocrystals with luminescent properties or carbon quantum dots (CQDs) are the newly developed nanomaterials whose distinctive photo-physical characteristics are focusing to a new generation of robust materials and sensors for sustainable development. In this review, advances in surface and band gap modification of CQDs to improve the activity of nanomaterials will be discussed with special reference to some specific CQDs exhibiting special optical properties for water treatment/splitting applications. Recent advances on CQDs nanocomposites including their applications in photodegradation of organic pollutants, sensing of heavy metal ions in water and water splitting are discussed critically to narrate the future prospects in this field. Challenges and limitations for further improvement are covered to provide smart choices for creating sustainability of benign environment and economic benefits.


Assuntos
Recuperação e Remediação Ambiental , Pontos Quânticos , Carbono , Humanos , Hidrogênio , Fotólise
14.
J Nanosci Nanotechnol ; 18(1): 623-633, 2018 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-29768888

RESUMO

Porous hydroxyapatite (HAp) nanorods using surfactant templating proceeded via microwave irradiation method. Study of BET surface area measurement of the HAp nanorods showed that surface area of HAp nanorods with a mixture of cat-anionic surfactants was higher (56.16 m2/g) than their individual counterpart (for anionic 52.8 m2/g and for cationic 48.8 m2/g) as well as without surfactant (19.07 m2/g) due to higher synergistic effect and low critical aggregation concentration of the mixture. Surfactant-directed synthesis of porous HAp has been explored in literature, but the relation between the pore size distribution, surface area and morphology and choice of surfactant(s) was not fully understood and hence in this work we have explored those parameters. The rod shape morphology and the crystal structure of the synthesized HAp nanomaterial were observed by FESEM, HRTEM, and XRD. Due to the higher surface area, HAp nanorods synthesized from the cat-anionic mixture, act as a better adsorbent for dyes and metal ions. The maximum adsorption of dye (methylene blue) was found to be 833.3 mg/g whereas for heavy metal ions like Pb2+ and Cd2+ were 909 and 714.28 mg/g respectively. The kinetic mechanism, the effects of adsorbate pH, temperature, contact time and adsorbent concentration on the dye and metal ions removal were also explored. The antibacterial property of HAp nanorods after doping with silver was investigated against the gram-negative Escherichia coli and gram-positive Bacillus subtilis bacteria by measuring minimal inhibitory concentration (MIC) method.

15.
J Nanosci Nanotechnol ; 17(2): 1149-155, 2017 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-29676881

RESUMO

The composites of TiO2 and bentonite were synthesized under microwave conditions. Formation of anatase TiO2 nanoparticles was achieved within 10 minutes by microwave treatment at 180 °C on the clay surface. Phase composition, particle morphology, specific surface area, chemical bonding etc. of these samples were characterized by using X-ray diffraction (XRD), transmission electron microscopy (TEM), scanning electron microscopy (SEM), nitrogen gas adsorption method (BET) and fourier transform infrared spectroscopy (FTIR). The photo catalytic activity of the as prepared material to degrade methylene blue resulting in complete photomineralization to CO2 and H2O was monitored by UV-Vis spectroscopy and gas chromatography. The effect of TiO2 content on the photocatalytic activity was also investigated. Bentonite containing 50% TiO2 by weight showed the highest photocatalytic activity because of its relatively large specific surface area and pore volume. Overall our findings show that the photocatalytic activity of resulting composite is more efficient than commercial nano-TiO2 and thus could therefore be an economic competitive candidate for contaminated water remediation.

16.
Artigo em Inglês | MEDLINE | ID: mdl-39096456

RESUMO

Single rock-like N-doped carbon monolith (ND-PFCM) was successfully constructed via nanocasting method. Phenol formaldehyde resin was taken as carbon source and nitrogen was incorporated in monoliths through NaNH2 activation. The synthesized monoliths were used for the removal of Pb (II) from aqueous solution. Various characterization techniques, namely Brunauer-Emmett-Teller (BET), Raman spectroscopy, UV-visible diffuse reflectance spectra (DRS) UV-DRS, zeta potential, scanning electron microscopy (SEM), TEM (transmission electron microscopy), TGA (thermogravimetric analysis), and XPS (X-ray photoelectron spectroscopy), were utilized to characterize synthesized monolithic samples. The different parameters such as pH, adsorbent dosage, and time were enquired on the removal efficiency of monoliths toward Pb(II). ND-PFCM exhibited the highest adsorption capacity of 330.03 mg g-1 in 180 min at pH 6. This is attributed to the fact that the better texture properties and presence of nitrogen functional groups enhance the uptake of Pb (II) ions on the monolith surface. In the kinetic studies, pseudo-second-order model fitted best with the experimental data. Furthermore, the removal of thiamethoxam (TM) from aqueous solution was done by using different weight ratios of ND-PFCM under the visible light. The maximum removal efficiency of 97.35% with rate constant of 0.02085 min-1 was obtained in 160 min. Moreover, monoliths exhibited good reusability for five consecutive cycles. The findings suggest that the synthesized monoliths exhibit characteristics suitable and eco-friendly for sustainable use in water treatment applications.

17.
Indian J Gastroenterol ; 43(4): 717-728, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38427281

RESUMO

Biliary tract cancers are malignant neoplasms arising from bile duct epithelial cells. They include cholangiocarcinomas and gallbladder cancer. Gallbladder cancer has a marked geographical preference and is one of the most common cancers in women in northern India. Biliary tract cancers are usually diagnosed at an advanced, unresectable stage. Hence, the prognosis is extremely dismal. The five-year survival rate in advanced gallbladder cancer is < 5%. Hence, early detection and radical surgery are critical to improving biliary tract cancer prognoses. Radiological imaging plays an essential role in diagnosing and managing biliary tract cancers. However, the diagnosis is challenging because the biliary tract is affected by many diseases that may have radiological appearances similar to cancer. Artificial intelligence (AI) can improve radiologists' performance in various tasks. Deep learning (DL)-based approaches are increasingly incorporated into medical imaging to improve diagnostic performance. This paper reviews the AI-based strategies in biliary tract cancers to improve the diagnosis and prognosis.


Assuntos
Inteligência Artificial , Neoplasias do Sistema Biliar , Humanos , Neoplasias do Sistema Biliar/diagnóstico , Neoplasias do Sistema Biliar/diagnóstico por imagem , Aprendizado Profundo , Prognóstico , Neoplasias da Vesícula Biliar/diagnóstico por imagem , Neoplasias da Vesícula Biliar/diagnóstico , Feminino , Colangiocarcinoma/diagnóstico por imagem , Colangiocarcinoma/diagnóstico
18.
Heliyon ; 10(5): e27439, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38463862

RESUMO

In this research, we have developed solid MGOs by self-assembled reduction process of GO at 90 °C with different weight ratios of oxalic acid (1:1, 1:0.500, and 1:0.250). The as-synthesized monoliths were carbonized (at 600 °C) and chemically activated with varying proportions of NaOH (1:1, 1:2, and 1:3). This materials offer the CO2 adsorption effect under dynamic conditions, fast mass transfer, easy handling, and outstanding stability throughout the adsorption-desorption cycle. FE-SEM, and HR-TEM analyses confirmed the porous nature and shape of the adsorbents, while XPS examination revealed the presence of distinct functional groups on the surface of the monolith. By increasing the mass ratios (MGO:NaOH) from 1:1 to 1:2, the surface areas increased by approximately 2.6 times, ranging from 520.8 to 753.9 m2 g⁻1 (surface area of the untreated MGO was 289.2 m2 g⁻1). Consequently, this resulted in a notable enhancement of 2.10 mmol g⁻1 in dynamic CO2 capture capacity. The assessment encompassed the evaluation of production yield, selectivity, regenerability, kinetics, equilibrium isotherm, and isosteric temperatures of adsorption (Qst). The decrease in CO2 capture effectiveness with rising adsorption temperature indicated an exothermic and physisorption process. The regenerability of 99.1 % at 100 °C and excellent cyclic stability with efficient CO2 adsorption make this monolithic adsorbent appropriate for post-combustion CO2 capture. The significant Qst lend support to the heterogeneity of the adsorbent's surface, and the pseudo-second-order kinetic model along with the Freundlich isotherm model emerged as the most fitting. Therefore, the current investigation shows that the carbon-enriched adsorbents enhance the CO2 adsorption capacity. It may be used as a low-cost pretreatment method on an industrial scale before carbon capture.

19.
Indian J Gastroenterol ; 43(4): 805-812, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38110782

RESUMO

BACKGROUND: The radiological differentiation of xanthogranulomatous cholecystitis (XGC) and gallbladder cancer (GBC) is challenging yet critical. We aimed at utilizing the deep learning (DL)-based approach for differentiating XGC and GBC on ultrasound (US). METHODS: This single-center study comprised consecutive patients with XGC and GBC from a prospectively acquired database who underwent pre-operative US evaluation of the gallbladder lesions. The performance of state-of-the-art (SOTA) DL models (GBCNet-convolutional neural network [CNN] and RadFormer, transformer) for XGC vs. GBC classification in US images was tested and compared with popular DL models and a radiologist. RESULTS: Twenty-five patients with XGC (mean age, 57 ± 12.3, 17 females) and 55 patients with GBC (mean age, 54.6 ± 11.9, 38 females) were included. The performance of GBCNet and RadFormer was comparable (sensitivity 89.1% vs. 87.3%, p = 0.738; specificity 72% vs. 84%, p = 0.563; and AUC 0.744 vs. 0.751, p = 0.514). The AUCs of DenseNet-121, vision transformer (ViT) and data-efficient image transformer (DeiT) were significantly smaller than of GBCNet (p = 0.015, 0.046, 0.013, respectively) and RadFormer (p = 0.012, 0.027, 0.007, respectively). The radiologist labeled US images of 24 (30%) patients non-diagnostic. In the remaining patients, the sensitivity, specificity and AUC for GBC detection were 92.7%, 35.7% and 0.642, respectively. The specificity of the radiologist was significantly lower than of GBCNet and RadFormer (p = 0.001). CONCLUSION: SOTA DL models have a better performance than radiologists in differentiating XGC and GBC on the US.


Assuntos
Colecistite , Aprendizado Profundo , Neoplasias da Vesícula Biliar , Ultrassonografia , Xantomatose , Humanos , Neoplasias da Vesícula Biliar/diagnóstico por imagem , Neoplasias da Vesícula Biliar/patologia , Feminino , Pessoa de Meia-Idade , Masculino , Ultrassonografia/métodos , Diagnóstico Diferencial , Xantomatose/diagnóstico por imagem , Xantomatose/patologia , Colecistite/diagnóstico por imagem , Idoso , Sensibilidade e Especificidade , Adulto , Granuloma/diagnóstico por imagem , Estudos Prospectivos
20.
Lancet Reg Health Southeast Asia ; 24: 100279, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38756152

RESUMO

Background: Gallbladder cancer (GBC) is highly aggressive. Diagnosis of GBC is challenging as benign gallbladder lesions can have similar imaging features. We aim to develop and validate a deep learning (DL) model for the automatic detection of GBC at abdominal ultrasound (US) and compare its diagnostic performance with that of radiologists. Methods: In this prospective study, a multiscale, second-order pooling-based DL classifier model was trained (training and validation cohorts) using the US data of patients with gallbladder lesions acquired between August 2019 and June 2021 at the Postgraduate Institute of Medical Education and research, a tertiary care hospital in North India. The performance of the DL model to detect GBC was evaluated in a temporally independent test cohort (July 2021-September 2022) and was compared with that of two radiologists. Findings: The study included 233 patients in the training set (mean age, 48 ± (2SD) 23 years; 142 women), 59 patients in the validation set (mean age, 51.4 ± 19.2 years; 38 women), and 273 patients in the test set (mean age, 50.4 ± 22.1 years; 177 women). In the test set, the DL model had sensitivity, specificity, and area under the receiver operating characteristic curve (AUC) of 92.3% (95% CI, 88.1-95.6), 74.4% (95% CI, 65.3-79.9), and 0.887 (95% CI, 0.844-0.930), respectively for detecting GBC which was comparable to both the radiologists. The DL-based approach showed high sensitivity (89.8-93%) and AUC (0.810-0.890) for detecting GBC in the presence of stones, contracted gallbladders, lesion size <10 mm, and neck lesions, which was comparable to both the radiologists (p = 0.052-0.738 for sensitivity and p = 0.061-0.745 for AUC). The sensitivity for DL-based detection of mural thickening type of GBC was significantly greater than one of the radiologists (87.8% vs. 72.8%, p = 0.012), despite a reduced specificity. Interpretation: The DL-based approach demonstrated diagnostic performance comparable to experienced radiologists in detecting GBC using US. However, multicentre studies are warranted to explore the potential of DL-based diagnosis of GBC fully. Funding: None.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA