Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Opt Express ; 32(4): 4839-4856, 2024 Feb 12.
Artigo em Inglês | MEDLINE | ID: mdl-38439226

RESUMO

A laboratory X-ray imaging system with a setup that closely resembles commercial micro-CT systems with a fixed source-to-detector distance of ∼90 cm is investigated for single distance propagation-based phase-contrast imaging and computed tomography (CT). The system had a constant source-to-detector distance, and the sample positions were optimized. Initially, a PTFE wire was imaged, both in 2D and 3D, to characterize fringe contrast and spatial resolution for different X-ray source settings and source-to-sample distances. The results were compared to calculated values based on theoretical models and to simulated (wave-optics based) results, with good agreement being found. The optimization of the imaging system is discussed. CT scans of two biological samples, a tissue-engineered esophageal scaffold and a rat heart, were then acquired at the optimum parameters, demonstrating that significant image quality improvements can be obtained with widely available components placed inside fixed-length cabinets through proper optimization of propagation-based phase-contrast.

2.
Optica ; 11(4): 569-576, 2024 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-39006164

RESUMO

With histopathology results typically taking several days, the ability to stage tumors during interventions could provide a step change in various cancer interventions. X-ray technology has advanced significantly in recent years with the introduction of phase-based imaging methods. These have been adapted for use in standard labs rather than specialized facilities such as synchrotrons, and approaches that enable fast 3D scans with conventional x-ray sources have been developed. This opens the possibility to produce 3D images with enhanced soft tissue contrast at a level of detail comparable to histopathology, in times sufficiently short to be compatible with use during surgical interventions. In this paper we discuss the application of one such approach to human esophagi obtained from esophagectomy interventions. We demonstrate that the image quality is sufficiently high to enable tumor T staging based on the x-ray datasets alone. Alongside detection of involved margins with potentially life-saving implications, staging tumors intra-operatively has the potential to change patient pathways, facilitating optimization of therapeutic interventions during the procedure itself. Besides a prospective intra-operative use, the availability of high-quality 3D images of entire esophageal tumors can support histopathological characterization, from enabling "right slice first time" approaches to understanding the histopathology in the full 3D context of the surrounding tumor environment.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA