Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 105(37): 13835-40, 2008 Sep 16.
Artigo em Inglês | MEDLINE | ID: mdl-18772391

RESUMO

A-kinase anchoring proteins (AKAPs) influence the spatial and temporal regulation of cAMP signaling events. Anchoring of PKA in proximity to certain adenylyl cyclase (AC) isoforms is thought to enhance the phosphorylation dependent termination of cAMP synthesis. Using a combination of immunoprecipitation and enzymological approaches, we show that the plasma membrane targeted anchoring protein AKAP9/Yotiao displays unique specificity for interaction and the regulation of a variety of AC isoforms. Yotiao inhibits AC 2 and 3, but has no effect on AC 1 or 9, serving purely as a scaffold for these latter isoforms. Thus, Yotiao represents an inhibitor of AC2. The N terminus of AC2 (AC2-NT), which binds directly to amino acids 808-957 of Yotiao, mediates this interaction. Additionally, AC2-NT and Yotiao (808-957) are able to effectively inhibit the association of AC2 with Yotiao and, thus, reverse the inhibition of AC2 by Yotiao in membranes. Finally, disruption of Yotiao-AC interactions gives rise to a 40% increase in brain AC activity, indicating that this anchoring protein functions to directly regulate cAMP production in the brain.


Assuntos
Proteínas de Ancoragem à Quinase A/metabolismo , Adenilil Ciclases/metabolismo , Encéfalo/enzimologia , Proteínas do Citoesqueleto/metabolismo , Proteínas de Ancoragem à Quinase A/antagonistas & inibidores , Proteínas de Ancoragem à Quinase A/genética , Inibidores de Adenilil Ciclases , Animais , Sítios de Ligação , Encéfalo/efeitos dos fármacos , Linhagem Celular , Membrana Celular/enzimologia , Proteínas do Citoesqueleto/antagonistas & inibidores , Proteínas do Citoesqueleto/genética , Inibidores Enzimáticos/farmacologia , Humanos , Isoenzimas/metabolismo , Ligação Proteica , Ratos
2.
J Mol Cell Cardiol ; 48(2): 387-94, 2010 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-19883655

RESUMO

mAKAPbeta is the scaffold for a multimolecular signaling complex in cardiac myocytes that is required for the induction of neonatal myocyte hypertrophy. We now show that the pro-hypertrophic phosphatase calcineurin binds directly to a single site on mAKAPbeta that does not conform to any of the previously reported consensus binding sites. Calcineurin-mAKAPbeta complex formation is increased in the presence of Ca(2+)/calmodulin and in norepinephrine-stimulated primary cardiac myocytes. This binding is of functional significance because myocytes exhibit diminished norepinephrine-stimulated hypertrophy when expressing a mAKAPbeta mutant incapable of binding calcineurin. In addition to calcineurin, the transcription factor NFATc3 also associates with the mAKAPbeta scaffold in myocytes. Calcineurin bound to mAKAPbeta can dephosphorylate NFATc3 in myocytes, and expression of mAKAPbeta is required for NFAT transcriptional activity. Taken together, our results reveal the importance of regulated calcineurin binding to mAKAPbeta for the induction of cardiac myocyte hypertrophy. Furthermore, these data illustrate how scaffold proteins organizing localized signaling complexes provide the molecular architecture for signal transduction networks regulating key cellular processes.


Assuntos
Proteínas de Ancoragem à Quinase A/metabolismo , Calcineurina/metabolismo , Cardiomegalia/enzimologia , Miócitos Cardíacos/enzimologia , Miócitos Cardíacos/patologia , Proteínas de Ancoragem à Quinase A/química , Animais , Cálcio/metabolismo , Calmodulina/metabolismo , Linhagem Celular , Ativação Enzimática , Humanos , Miocárdio/metabolismo , Fatores de Transcrição NFATC/metabolismo , Ligação Proteica , Estrutura Terciária de Proteína , Transporte Proteico , Ratos , Ratos Sprague-Dawley
4.
Neuropharmacology ; 46(3): 299-310, 2004 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-14975685

RESUMO

Significant progress has been made toward understanding the mechanisms by which organisms learn from experiences and how those experiences are translated into memories. Advances in molecular, electrophysiological and genetic technologies have permitted great strides in identifying biochemical and structural changes that occur at synapses during processes that are thought to underlie learning and memory. Cellular events that generate the second messenger cyclic AMP (cAMP) and activate protein kinase A (PKA) have been linked to synaptic plasticity and long-term memory. In this review we will focus on the role of PKA in synaptic plasticity and discuss how the compartmentalization of PKA through its association with A-Kinase Anchoring Proteins (AKAPs) affect PKA function in this process.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal , Proteínas de Transporte/fisiologia , Proteínas Quinases Dependentes de AMP Cíclico/fisiologia , Plasticidade Neuronal/fisiologia , Transdução de Sinais/fisiologia , Sinapses/enzimologia , Animais , Proteínas de Transporte/química , Proteínas Quinases Dependentes de AMP Cíclico/química , Humanos
5.
IUBMB Life ; 59(3): 163-9, 2007 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-17487687

RESUMO

Cardiac hypertrophy is regulated by a large intracellular signal transduction network. Each of the many signaling pathways in this network contributes uniquely to the control of cell growth. In the last few years, it has become apparent that multimolecular signaling complexes or 'signalosomes' are important for mediating crosstalk between different signaling pathways. These complexes integrate upstream signals and control downstream effectors. In the cardiac myocyte, the protein mAKAPbeta serves as a scaffold for a large signalosome that is responsive to upstream cAMP, Ca(2+), and mitogen-activated protein kinase signaling. The mAKAPbeta signalosome is important for the control of NFATc transcription factor activity and for the overall induction of myocyte hypertrophy.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Cardiomegalia/metabolismo , Miócitos Cardíacos , Transdução de Sinais/fisiologia , Proteínas de Ancoragem à Quinase A , Proteínas Adaptadoras de Transdução de Sinal/genética , Animais , Calcineurina/metabolismo , Cardiomegalia/patologia , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Retroalimentação Fisiológica , Humanos , Modelos Biológicos , Miócitos Cardíacos/metabolismo , Miócitos Cardíacos/patologia , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Canal de Liberação de Cálcio do Receptor de Rianodina/metabolismo
6.
Mol Cell ; 23(6): 925-31, 2006 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-16973443

RESUMO

Spatiotemporal organization of cAMP signaling begins with the tight control of second messenger synthesis. In response to agonist stimulation of G protein-coupled receptors, membrane-associated adenylyl cyclases (ACs) generate cAMP that diffuses throughout the cell. The availability of cAMP activates various intracellular effectors, including protein kinase A (PKA). Specificity in PKA action is achieved by the localization of the enzyme near its substrates through association with A-kinase anchoring proteins (AKAPs). Here, we provide evidence for interactions between AKAP79/150 and ACV and ACVI. PKA anchoring facilitates the preferential phosphorylation of AC to inhibit cAMP synthesis. Real-time cellular imaging experiments show that PKA anchoring with the cAMP synthesis machinery ensures rapid termination of cAMP signaling upon activation of the kinase. This protein configuration permits the formation of a negative feedback loop that temporally regulates cAMP production.


Assuntos
Adenilil Ciclases/metabolismo , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , AMP Cíclico/biossíntese , Isoenzimas/metabolismo , Proteínas de Ancoragem à Quinase A , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/fisiologia , Células Cultivadas , Proteínas Quinases Dependentes de AMP Cíclico/fisiologia , Ativação Enzimática , Retroalimentação Fisiológica , Humanos , Modelos Biológicos , Fosforilação , Transdução de Sinais/fisiologia
7.
J Cell Sci ; 118(Pt 23): 5637-46, 2005 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-16306226

RESUMO

Maladaptive cardiac hypertrophy can progress to congestive heart failure, a leading cause of morbidity and mortality in the United States. A better understanding of the intracellular signal transduction network that controls myocyte cell growth may suggest new therapeutic directions. mAKAP is a scaffold protein that has recently been shown to coordinate signal transduction enzymes important for cytokine-induced cardiac hypertrophy. We now extend this observation and show mAKAP is important for adrenergic-mediated hypertrophy. One function of the mAKAP complex is to facilitate cAMP-dependent protein kinase A-catalyzed phosphorylation of the ryanodine receptor Ca2+-release channel. Experiments utilizing inhibition of the ryanodine receptor, RNA interference of mAKAP expression and replacement of endogenous mAKAP with a mutant form that does not bind to protein kinase A demonstrate that the mAKAP complex contributes to pro-hypertrophic signaling. Further, we show that calcineurin Abeta associates with mAKAP and that the formation of the mAKAP complex is required for the full activation of the pro-hypertrophic transcription factor NFATc. These data reveal a novel function of the mAKAP complex involving the integration of cAMP and Ca2+ signals that promote myocyte hypertrophy.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Cardiomegalia/metabolismo , Miócitos Cardíacos/metabolismo , Miócitos Cardíacos/patologia , Receptores Adrenérgicos/metabolismo , Transdução de Sinais/fisiologia , Proteínas de Ancoragem à Quinase A , Proteínas Adaptadoras de Transdução de Sinal/efeitos dos fármacos , Agonistas Adrenérgicos beta/farmacologia , Animais , Calcineurina/metabolismo , Cardiomegalia/patologia , Células Cultivadas , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Miócitos Cardíacos/efeitos dos fármacos , Fatores de Transcrição NFATC/metabolismo , Interferência de RNA/efeitos dos fármacos , Ratos , Ratos Sprague-Dawley , Receptores Adrenérgicos/efeitos dos fármacos , Canal de Liberação de Cálcio do Receptor de Rianodina/efeitos dos fármacos , Canal de Liberação de Cálcio do Receptor de Rianodina/metabolismo , Transdução de Sinais/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA