Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
1.
Arterioscler Thromb Vasc Biol ; 41(11): 2740-2755, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34615372

RESUMO

Objective: MR (mineralocorticoid receptor) activation associates with increased risk of cardiovascular ischemia while MR inhibition reduces cardiovascular-related mortality and plaque inflammation in mouse atherosclerosis. MR in myeloid cells (My-MR) promotes inflammatory cell infiltration into injured tissues and atherosclerotic plaque inflammation by unclear mechanisms. Here, we examined the role of My-MR in leukocyte trafficking and the impact of sex. Approach and Results: We confirm in vivo that My-MR deletion (My-MR-KO) in ApoE-KO mice decreased plaque size. Flow cytometry revealed fewer plaque macrophages with My-MR-KO. By intravital microscopy, My-MR-KO significantly attenuated monocyte slow-rolling and adhesion to mesenteric vessels and decreased peritoneal infiltration of myeloid cells in response to inflammatory stimuli in male but not female mice. My-MR-KO mice had significantly less PSGL1 (P-selectin glycoprotein ligand 1) mRNA in peritoneal macrophages and surface PSGL1 protein on circulating monocytes in males. In vitro, MR activation with aldosterone significantly increased PSGL1 mRNA only in monocytes from MR-intact males. Similarly, aldosterone induced, and MR antagonist spironolactone inhibited, PSGL1 expression in human U937 monocytes. Mechanistically, aldosterone stimulated MR binding to a predicted MR response element in intron-1 of the PSGL1 gene by ChIP-qPCR. Reporter assays demonstrated that this PSGL1 MR response element is necessary and sufficient for aldosterone-activated, MR-dependent transcriptional activity. Conclusions: These data identify PSGL1 as a My-MR target gene that drives leukocyte trafficking to enhance atherosclerotic plaque inflammation. These novel and sexually dimorphic findings provide insight into increased ischemia risk with MR activation, cardiovascular protection in women, and the role of MR in atherosclerosis and tissue inflammation.


Assuntos
Aorta Torácica/metabolismo , Doenças da Aorta/metabolismo , Aterosclerose/metabolismo , Adesão Celular , Migração e Rolagem de Leucócitos , Macrófagos Peritoneais/metabolismo , Glicoproteínas de Membrana/metabolismo , Monócitos/metabolismo , Receptores de Mineralocorticoides/metabolismo , Adulto , Animais , Aorta Torácica/patologia , Doenças da Aorta/genética , Doenças da Aorta/patologia , Doenças da Aorta/prevenção & controle , Aterosclerose/genética , Aterosclerose/patologia , Aterosclerose/prevenção & controle , Adesão Celular/efeitos dos fármacos , Modelos Animais de Doenças , Feminino , Células HEK293 , Humanos , Hipoglicemia/tratamento farmacológico , Hipoglicemia/genética , Hipoglicemia/metabolismo , Migração e Rolagem de Leucócitos/efeitos dos fármacos , Macrófagos Peritoneais/patologia , Masculino , Glicoproteínas de Membrana/genética , Camundongos Endogâmicos C57BL , Camundongos Knockout para ApoE , Pessoa de Meia-Idade , Antagonistas de Receptores de Mineralocorticoides/uso terapêutico , Monócitos/efeitos dos fármacos , Monócitos/patologia , Ensaios Clínicos Controlados Aleatórios como Assunto , Receptores de Mineralocorticoides/efeitos dos fármacos , Receptores de Mineralocorticoides/genética , Fatores Sexuais , Transdução de Sinais , Espironolactona/uso terapêutico , Transcrição Gênica , Migração Transendotelial e Transepitelial , Resultado do Tratamento , Células U937 , Adulto Jovem
2.
Am J Physiol Heart Circ Physiol ; 316(1): H145-H159, 2019 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-30362822

RESUMO

Myocardial hypertrophy is an independent risk factor for heart failure (HF), yet the mechanisms underlying pathological cardiomyocyte growth are incompletely understood. The c-Jun NH2-terminal kinase (JNK) signaling cascade modulates cardiac hypertrophic remodeling, but the upstream factors regulating myocardial JNK activity remain unclear. In this study, we sought to identify JNK-activating molecules as novel regulators of cardiac remodeling in HF. We investigated mixed lineage kinase-3 (MLK3), a master regulator of upstream JNK-activating kinases, whose role in the remodeling process had not previously been studied. We observed increased MLK3 protein expression in myocardium from patients with nonischemic and hypertrophic cardiomyopathy and in hearts of mice subjected to transverse aortic constriction (TAC). Mice with genetic deletion of MLK3 (MLK3-/-) exhibited baseline cardiac hypertrophy with preserved cardiac function. MLK3-/- mice subjected to chronic left ventricular (LV) pressure overload (TAC, 4 wk) developed worsened cardiac dysfunction and increased LV chamber size compared with MLK3+/+ littermates ( n = 8). LV mass, pathological markers of hypertrophy ( Nppa, Nppb), and cardiomyocyte size were elevated in MLK3-/- TAC hearts. Phosphorylation of JNK, but not other MAPK pathways, was selectively impaired in MLK3-/- TAC hearts. In adult rat cardiomyocytes, pharmacological MLK3 kinase inhibition using URMC-099 blocked JNK phosphorylation induced by neurohormonal agents and oxidants. Sustained URMC-099 exposure induced cardiomyocyte hypertrophy. These data demonstrate that MLK3 prevents adverse cardiac remodeling in the setting of pressure overload. Mechanistically, MLK3 activates JNK, which in turn opposes cardiomyocyte hypertrophy. These results support modulation of MLK3 as a potential therapeutic approach in HF. NEW & NOTEWORTHY Here, we identified a role for mixed lineage kinase-3 (MLK3) as a novel antihypertrophic and antiremodeling molecule in response to cardiac pressure overload. MLK3 regulates phosphorylation of the stress-responsive JNK kinase in response to pressure overload and in cultured cardiomyocytes stimulated with hypertrophic agonists and oxidants. This study reveals MLK3-JNK signaling as a novel cardioprotective signaling axis in the setting of pressure overload.


Assuntos
Cardiomegalia/metabolismo , MAP Quinase Quinase Quinases/genética , Sistema de Sinalização das MAP Quinases , Animais , Débito Cardíaco , Cardiomegalia/patologia , Cardiomegalia/fisiopatologia , Células Cultivadas , Humanos , MAP Quinase Quinase 4/metabolismo , MAP Quinase Quinase Quinases/antagonistas & inibidores , MAP Quinase Quinase Quinases/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Miócitos Cardíacos/efeitos dos fármacos , Miócitos Cardíacos/metabolismo , Miócitos Cardíacos/fisiologia , Inibidores de Proteínas Quinases/farmacologia , Piridinas/farmacologia , Pirróis/farmacologia , Ratos , Ratos Sprague-Dawley , Remodelação Ventricular , MAP Quinase Quinase Quinase 11 Ativada por Mitógeno
3.
J Mol Cell Cardiol ; 87: 160-70, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26299839

RESUMO

Abdominal Aortic Aneurysm (AAA) is a major cause of mortality and morbidity in men over 65 years of age. Male apolipoprotein E knockout (ApoE(-/-)) mice infused with angiotensin II (AngII) develop AAA. Although AngII stimulates both JAK/STAT and Toll-like receptor 4 (TLR4) signaling pathways, their involvement in AngII mediated AAA formation is unclear. Here we used the small molecule STAT3 inhibitor, S3I-201, the TLR4 inhibitor Eritoran and ApoE(-/-)TLR4(-/-) mice to evaluate the interaction between STAT3 and TLR4 signaling in AngII-induced AAA formation. ApoE(-/-) mice infused for 28 days with AngII developed AAAs and increased STAT3 activation and TLR4 expression. Moreover, AngII increased macrophage infiltration and the ratio of M1 (pro-inflammatory)/M2 (healing) macrophages in aneurysmal tissue as early as 7-10 days after AngII infusion. STAT3 inhibition with S3I-201 decreased the incidence and severity of AngII-induced AAA formation and decreased MMP activity and the ratio of M1/M2 macrophages. Furthermore, AngII-mediated AAA formation, MMP secretion, STAT3 phosphorylation and the ratio of M1/M2 macrophages were markedly decreased in ApoE(-/-)TLR4(-/-) mice, and in Eritoran-treated ApoE(-/-) mice. TLR4 and pSTAT3 levels were also increased in human aneurysmal tissue. These data support a role of pSTAT3 in TLR4 dependent AAA formation and possible therapeutic roles for TLR4 and/or STAT3 inhibition in AAA.


Assuntos
Aneurisma da Aorta Abdominal/genética , Fator de Transcrição STAT3/genética , Receptor 4 Toll-Like/genética , Angiotensina II/toxicidade , Animais , Aneurisma da Aorta Abdominal/induzido quimicamente , Aneurisma da Aorta Abdominal/patologia , Apolipoproteínas E/genética , Modelos Animais de Doenças , Regulação da Expressão Gênica , Humanos , Macrófagos/metabolismo , Macrófagos/patologia , Masculino , Camundongos , Camundongos Knockout , Fator de Transcrição STAT3/biossíntese , Fator de Transcrição STAT3/metabolismo , Transdução de Sinais , Receptor 4 Toll-Like/metabolismo
4.
Arterioscler Thromb Vasc Biol ; 33(8): 1837-43, 2013 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-23744991

RESUMO

OBJECTIVE: The proliferation of vascular smooth muscle cells (VSMCs) plays a crucial role in vascular diseases, such as atherosclerosis and restenosis, after percutaneous coronary intervention. Many studies have shown that estrogen inhibits VSMC proliferation in response to vascular injury in the mouse carotid injury model. However, the mechanisms that mediate these effects remain unclear. Here, we investigated the mechanisms by which estrogen inhibits VSMC proliferation. APPROACH AND RESULTS: We established a novel transgenic mouse line, referred to as the disrupting peptide mice, in which rapid estrogen receptor (ER)-mediated signaling is abolished by overexpression of a peptide that prevents the ER from forming a signaling complex necessary for rapid signaling. Carotid artery VSMCs from disrupting peptide mice or littermate wild-type female mice were obtained by the explant method. In VSMCs derived from wild-type mice, estrogen significantly inhibited VSMC proliferation. Phosphorylation levels of Akt and extracellular regulated kinase induced by platelet derived growth factor were significantly inhibited by estrogen pretreatment. Estrogen enhanced complex formation between ERα and protein phosphatase 2A (PP2), and enhanced PP2A activity. The blockade of PP2A activity abolished the estrogen-induced antiproliferative effect on VSMCs. In contrast, none of these effects of estrogen observed in the wild-type VSMCs were observed in VSMCs derived from disrupting peptide mice. These results support that rapid, non-nuclear ER signaling is required for estrogen-induced inhibition of VSMC proliferation, and further that PP2A activation by estrogen mediates estrogen-induced antiproliferative effects. CONCLUSIONS: These findings support that PP2A activation via rapid, non-nuclear ER signaling may be a novel target for therapeutic approaches to inhibit VSMC proliferation, which plays a central role in atherosclerosis and restenosis.


Assuntos
Aterosclerose/metabolismo , Receptor alfa de Estrogênio/metabolismo , Estrogênios/metabolismo , Músculo Liso Vascular/metabolismo , Fosfoproteínas Fosfatases/metabolismo , Transdução de Sinais/fisiologia , Animais , Aterosclerose/fisiopatologia , Proteínas de Ligação a Calmodulina/metabolismo , Movimento Celular/efeitos dos fármacos , Movimento Celular/fisiologia , Proliferação de Células/efeitos dos fármacos , Estrogênios/farmacologia , Feminino , Proteínas de Membrana/metabolismo , Camundongos , Camundongos Transgênicos , Músculo Liso Vascular/citologia , Proteínas do Tecido Nervoso/metabolismo , Fragmentos de Peptídeos/metabolismo , Fosforilação/fisiologia , Proteína Fosfatase 2C , Transdução de Sinais/efeitos dos fármacos
5.
Arterioscler Thromb Vasc Biol ; 33(2): 257-65, 2013 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-23175673

RESUMO

OBJECTIVE: Estradiol (E2) regulates gene transcription by activating estrogen receptor-α and estrogen receptor-ß. Many of the genes regulated by E2 via estrogen receptors are repressed, yet the molecular mechanisms that mediate E2-induced gene repression are currently unknown. We hypothesized that E2, acting through estrogen receptors, regulates expression of microRNAs (miRs) leading to repression of expression of specific target genes. METHODS AND RESULTS: Here, we report that E2 significantly upregulates the expression of 26 miRs and downregulates the expression of 6 miRs in mouse aorta. E2-mediated upregulation of one of these miRs, miR-203, was chosen for further study. In cultured vascular smooth muscle cells (VSMC), E2-mediated upregulation of miR-203 is mediated by estrogen receptor-α (but not estrogen receptor-ß) via transcriptional upregulation of the primary miR. We demonstrate that the transcription factors Zeb-1 and AP-1 play critical roles in mediating E2-induced upregulation of miR-203 transcription. We show further that miR-203 mediates E2-induced repression of Abl1, and p63 protein abundance in VSMC. Finally, knocking-down miR-203 abolishes E2-mediated inhibition of VSMC proliferation, and overexpression of miR-203 inhibits cultured VSMC proliferation, but not vascular endothelial cell proliferation. CONCLUSIONS: Our findings demonstrate that E2 regulates expression of miRs in the vasculature and support the estrogen receptors-dependent induction of miRs as a mechanism for E2-mediated gene repression. Furthermore, our findings demonstrate that miR-203 contributes to E2-induced inhibition of VSMC proliferation and highlight the potential of miR-203 as a therapeutic agent in the treatment of proliferative cardiovascular diseases.


Assuntos
Proliferação de Células , Receptor alfa de Estrogênio/metabolismo , MicroRNAs/metabolismo , Músculo Liso Vascular/metabolismo , Miócitos de Músculo Liso/metabolismo , Animais , Aorta/metabolismo , Aorta/patologia , Sítios de Ligação , Células Cultivadas , Estradiol/metabolismo , Feminino , Perfilação da Expressão Gênica , Regulação da Expressão Gênica , Proteínas de Homeodomínio/metabolismo , Células Endoteliais da Veia Umbilical Humana/metabolismo , Humanos , Fatores de Transcrição Kruppel-Like/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , MicroRNAs/genética , Músculo Liso Vascular/patologia , Miócitos de Músculo Liso/patologia , Ovariectomia , Fosfoproteínas/metabolismo , Regiões Promotoras Genéticas , Proteínas Proto-Oncogênicas c-abl/metabolismo , Interferência de RNA , Fatores de Tempo , Transativadores/metabolismo , Fator de Transcrição AP-1/metabolismo , Transcrição Gênica , Transfecção , Homeobox 1 de Ligação a E-box em Dedo de Zinco
6.
Circulation ; 126(16): 1993-2004, 2012 Oct 16.
Artigo em Inglês | MEDLINE | ID: mdl-22997253

RESUMO

BACKGROUND: Clinical trial and epidemiological data support that the cardiovascular effects of estrogen are complex, including a mixture of both potentially beneficial and harmful effects. In animal models, estrogen protects females from vascular injury and inhibits atherosclerosis. These effects are mediated by estrogen receptors (ERs), which, when bound to estrogen, can bind to DNA to directly regulate transcription. ERs can also activate several cellular kinases by inducing a rapid nonnuclear signaling cascade. However, the biological significance of this rapid signaling pathway has been unclear. METHODS AND RESULTS: In the present study, we develop a novel transgenic mouse in which rapid signaling is blocked by overexpression of a peptide that prevents ERs from interacting with the scaffold protein striatin (the disrupting peptide mouse). Microarray analysis of ex vivo treated mouse aortas demonstrates that rapid ER signaling plays an important role in estrogen-mediated gene regulatory responses. Disruption of ER-striatin interactions also eliminates the ability of estrogen to stimulate cultured endothelial cell migration and to inhibit cultured vascular smooth muscle cell growth. The importance of these findings is underscored by in vivo experiments demonstrating loss of estrogen-mediated protection against vascular injury in the disrupting peptide mouse after carotid artery wire injury. CONCLUSIONS: Taken together, these results support the concept that rapid, nonnuclear ER signaling contributes to the transcriptional regulatory functions of ER and is essential for many of the vasoprotective effects of estrogen. These findings also identify the rapid ER signaling pathway as a potential target for the development of novel therapeutic agents.


Assuntos
Lesões das Artérias Carótidas/metabolismo , Estradiol/metabolismo , Receptor alfa de Estrogênio/genética , Receptor alfa de Estrogênio/metabolismo , Músculo Liso Vascular/fisiologia , Transdução de Sinais/fisiologia , Animais , Aorta/citologia , Células COS , Lesões das Artérias Carótidas/genética , Lesões das Artérias Carótidas/patologia , Chlorocebus aethiops , Modelos Animais de Doenças , Feminino , Células Endoteliais da Veia Umbilical Humana , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Músculo Liso Vascular/citologia , Ovariectomia , Gravidez , Transcriptoma
7.
Circ Res ; 104(4): 531-40, 2009 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-19131646

RESUMO

Abnormal vascular smooth muscle cell (VSMC) contraction plays an important role in vascular diseases. The RhoA/ROCK signaling pathway is now well recognized to mediate vascular smooth muscle contraction in response to vasoconstrictors by inhibiting myosin phosphatase (MLCP) activity and increasing myosin light chain phosphorylation. Two ROCK isoforms, ROCK1 and ROCK2, are expressed in many tissues, yet the isoform-specific roles of ROCK1 and ROCK2 in vascular smooth muscle and the mechanism of ROCK-mediated regulation of MLCP are not well understood. In this study, ROCK2, but not ROCK1, bound directly to the myosin binding subunit of MLCP, yet both ROCK isoforms regulated MLCP and myosin light chain phosphorylation. Despite that both ROCK1 and ROCK2 regulated MLCP, the ROCK isoforms had distinct and opposing effects on VSMC morphology and ROCK2, but not ROCK1, had a predominant role in VSMC contractility. These data support that although the ROCK isoforms both regulate MLCP and myosin light chain phosphorylation through different mechanisms, they have distinct roles in VSMC function.


Assuntos
Músculo Liso Vascular/enzimologia , Miócitos de Músculo Liso/enzimologia , Cadeias Leves de Miosina/metabolismo , Fosfatase de Miosina-de-Cadeia-Leve/metabolismo , Vasoconstrição , Quinases Associadas a rho/metabolismo , Animais , Sítios de Ligação , Linhagem Celular , Forma Celular , Células Cultivadas , Humanos , Isoenzimas , Lisofosfolipídeos/metabolismo , Fosforilação , Ligação Proteica , Interferência de RNA , RNA Interferente Pequeno/metabolismo , Ratos , Proteínas Recombinantes de Fusão/metabolismo , Fatores de Tempo , Transfecção , Quinases Associadas a rho/genética
8.
Proc Natl Acad Sci U S A ; 105(18): 6702-7, 2008 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-18448676

RESUMO

Hypertension, a major cardiovascular risk factor and cause of mortality worldwide, is thought to arise from primary renal abnormalities. However, the etiology of most cases of hypertension remains unexplained. Vascular tone, an important determinant of blood pressure, is regulated by nitric oxide, which causes vascular relaxation by increasing intracellular cGMP and activating cGMP-dependent protein kinase I (PKGI). Here we show that mice with a selective mutation in the N-terminal protein interaction domain of PKGIalpha display inherited vascular smooth muscle cell abnormalities of contraction, abnormal relaxation of large and resistance blood vessels, and increased systemic blood pressure. Renal function studies and responses to changes in dietary sodium in the PKGIalpha mutant mice are normal. These data reveal that PKGIalpha is required for normal VSMC physiology and support the idea that high blood pressure can arise from a primary abnormality of vascular smooth muscle cell contractile regulation, suggesting a new approach to the diagnosis and therapy of hypertension and cardiovascular diseases.


Assuntos
Hipertensão/fisiopatologia , Músculo Liso Vascular/fisiopatologia , Aldosterona/sangue , Animais , Proteína Quinase Dependente de GMP Cíclico Tipo I , Proteínas Quinases Dependentes de GMP Cíclico/metabolismo , Dieta , Hipertensão/enzimologia , Camundongos , Músculo Liso Vascular/enzimologia , Resistência Vascular , Sistema Vasomotor/enzimologia , Proteína rhoA de Ligação ao GTP/metabolismo
9.
Circ Res ; 102(11): 1359-67, 2008 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-18467630

RESUMO

In clinical trials, aldosterone antagonists decrease cardiovascular mortality and ischemia by unknown mechanisms. The steroid hormone aldosterone acts by binding to the mineralocorticoid receptor (MR), a ligand-activated transcription factor. In humans, aldosterone causes MR-dependent endothelial cell (EC) dysfunction and in animal models, aldosterone increases vascular macrophage infiltration and atherosclerosis. MR antagonists inhibit these effects without changing blood pressure, suggesting a direct role for vascular MR in EC function and atherosclerosis. Whether human vascular ECs express functional MR is not known. Here, we show that human coronary artery and aortic ECs express MR mRNA and protein and that EC MR mediates aldosterone-dependent gene transcription. Human ECs also express the enzyme 11-beta-hydroxysteroid dehydrogenase-2 (11betaHSD2), and inhibition of 11betaHSD2 in aortic ECs enhances gene transactivation by cortisol, supporting that EC 11betaHSD2 is functional. Furthermore, aldosterone stimulates transcription of the proatherogenic leukocyte-EC adhesion molecule intercellular adhesion molecule (ICAM)1 gene and protein expression on human coronary artery ECs, an effect inhibited by the MR antagonist spironolactone and by MR knock down with small interfering RNA. Cell adhesion assays demonstrate that aldosterone promotes leukocyte-EC adhesion, an effect that is inhibited by spironolactone and ICAM1 blocking antibody, supporting that aldosterone induction of EC ICAM1 surface expression via MR mediates leukocyte-EC adhesion. These data show that aldosterone activates endogenous EC MR and proatherogenic gene expression in clinically important human ECs. These studies describe a novel mechanism by which aldosterone may influence ischemic cardiovascular events and support a new explanation for the decrease in ischemic events in patients treated with aldosterone antagonists.


Assuntos
Células Endoteliais/metabolismo , Molécula 1 de Adesão Intercelular/metabolismo , Leucócitos/fisiologia , Receptores de Mineralocorticoides/metabolismo , Aldosterona/farmacologia , Aldosterona/fisiologia , Aorta/citologia , Adesão Celular/efeitos dos fármacos , Adesão Celular/fisiologia , Linhagem Celular , Vasos Coronários/citologia , Células Endoteliais/efeitos dos fármacos , Humanos , Molécula 1 de Adesão Intercelular/genética , Leucócitos/citologia , Antagonistas de Receptores de Mineralocorticoides/farmacologia , RNA Mensageiro/biossíntese , RNA Interferente Pequeno/farmacologia , Receptores de Mineralocorticoides/efeitos dos fármacos , Receptores de Mineralocorticoides/genética , Espironolactona/farmacologia , Transcrição Gênica/efeitos dos fármacos
10.
Diabetes ; 67(8): 1524-1537, 2018 08.
Artigo em Inglês | MEDLINE | ID: mdl-29764860

RESUMO

Women gain weight and their diabetes risk increases as they transition through menopause; these changes can be partly reversed by hormone therapy. However, the underlying molecular mechanisms mediating these effects are unknown. A novel knock-in mouse line with the selective blockade of the membrane-initiated estrogen receptor (ER) pathway was used, and we found that the lack of this pathway precipitated excessive weight gain and glucose intolerance independent of food intake and that this was accompanied by impaired adaptive thermogenesis and reduced physical activity. Notably, the central activation of protein phosphatase (PP) 2A improved metabolic disorders induced by the lack of membrane-initiated ER signaling. Furthermore, the antiobesity effect of estrogen replacement in a murine menopause model was abolished by central PP2A inactivation. These findings define a critical role for membrane-initiated ER signaling in metabolic homeostasis via the central action of PP2A.


Assuntos
Receptor alfa de Estrogênio/agonistas , Terapia de Reposição de Estrogênios , Intolerância à Glucose/prevenção & controle , Menopausa , Obesidade/prevenção & controle , Proteína Fosfatase 2/metabolismo , Transdução de Sinais/efeitos dos fármacos , Células 3T3-L1 , Adipócitos/efeitos dos fármacos , Adipócitos/metabolismo , Adipócitos/patologia , Adiposidade/efeitos dos fármacos , Substituição de Aminoácidos , Animais , Células Cultivadas , Dieta Hiperlipídica/efeitos adversos , Ativação Enzimática/efeitos dos fármacos , Estradiol/farmacologia , Estradiol/uso terapêutico , Receptor alfa de Estrogênio/genética , Receptor alfa de Estrogênio/metabolismo , Feminino , Técnicas de Introdução de Genes , Intolerância à Glucose/etiologia , Intolerância à Glucose/metabolismo , Intolerância à Glucose/patologia , Resistência à Insulina , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Músculo Liso Vascular/efeitos dos fármacos , Músculo Liso Vascular/metabolismo , Músculo Liso Vascular/patologia , Obesidade/etiologia , Obesidade/metabolismo , Obesidade/patologia , Ovariectomia , Mutação Puntual , Proteína Fosfatase 2/química
11.
PLoS One ; 11(6): e0156772, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27276022

RESUMO

MicroRNA-offset RNAs (moRs) were first identified in simple chordates and subsequently in mouse and human cells by deep sequencing of short RNAs. MoRs are derived from sequences located immediately adjacent to microRNAs (miRs) in the primary miR (pri-miR). Currently moRs are considered to be simply a by-product of miR biosynthesis that lack biological activity. Here we show for the first time that a moR is biologically active. We demonstrate that endogenous or over-expressed moR-21 significantly alters gene expression and inhibits the proliferation of vascular smooth muscle cells (VSMC). In addition, we find that miR-21 and moR-21 may regulate different genes in a given pathway and can oppose each other in regulating certain genes. We report that there is a "seed region" of moR-21 as well as a "seed match region" in the target gene 3'UTR that are indispensable for moR-21-mediated gene down-regulation. We further demonstrate that moR-21-mediated gene repression is Argonaute 2 (Ago2) dependent. Taken together, these findings provide the first evidence that microRNA offset RNA alters gene expression and is biologically active.


Assuntos
Regiões 3' não Traduzidas , Proteínas Argonautas/biossíntese , Proliferação de Células , Regulação para Baixo , MicroRNAs/metabolismo , Músculo Liso Vascular/metabolismo , Miócitos de Músculo Liso/metabolismo , Animais , Proteínas Argonautas/genética , Camundongos , MicroRNAs/genética , Músculo Liso Vascular/citologia , Miócitos de Músculo Liso/citologia
12.
JCI Insight ; 1(14): e88942, 2016 Sep 08.
Artigo em Inglês | MEDLINE | ID: mdl-27683672

RESUMO

Hypertension is nearly universal yet poorly controlled in the elderly despite proven benefits of intensive treatment. Mice lacking mineralocorticoid receptors in smooth muscle cells (SMC-MR-KO) are protected from rising blood pressure (BP) with aging, despite normal renal function. Vasoconstriction is attenuated in aged SMC-MR-KO mice, thus they were used to explore vascular mechanisms that may contribute to hypertension with aging. MicroRNA (miR) profiling identified miR-155 as the most down-regulated miR with vascular aging in MR-intact but not SMC-MR-KO mice. The aging-associated decrease in miR-155 in mesenteric resistance vessels was associated with increased mRNA abundance of MR and of predicted miR-155 targets Cav1.2 (L-type calcium channel (LTCC) subunit) and angiotensin type-1 receptor (AgtR1). SMC-MR-KO mice lacked these aging-associated vascular gene expression changes. In HEK293 cells, MR repressed miR-155 promoter activity. In cultured SMCs, miR-155 decreased Cav1.2 and AgtR1 mRNA. Compared to MR-intact littermates, aged SMC-MR-KO mice had decreased systolic BP, myogenic tone, SMC LTCC current, mesenteric vessel calcium influx, LTCC-induced vasoconstriction and angiotensin II-induced vasoconstriction and oxidative stress. Restoration of miR-155 specifically in SMCs of aged MR-intact mice decreased Cav1.2 and AgtR1 mRNA and attenuated LTCC-mediated and angiotensin II-induced vasoconstriction and oxidative stress. Finally, in a trial of MR blockade in elderly humans, changes in serum miR-155 predicted the BP treatment response. Thus, SMC-MR regulation of miR-155, Cav1.2 and AgtR1 impacts vasoconstriction with aging. This novel mechanism identifies potential new treatment strategies and biomarkers to improve and individualize antihypertensive therapy in the elderly.

13.
FEBS Lett ; 516(1-3): 1-8, 2002 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-11959092

RESUMO

In addition to mediating the classical transcriptional effects of estrogen, estrogen receptors (ERs) are now known to regulate gene expression in the absence of estrogen by ligand-independent activation pathways, and to mediate the rapid, non-genomic effects of estrogen as well. ERs have been shown to associate with the cell membrane, and recent studies demonstrate that this subpopulation of membrane-associated ER mediates the rapid effects of estrogen. To date, however, little is known regarding the pathways that regulate the distribution of the ER between the nuclear and membrane fractions. In the current study, we demonstrate membrane localization of transiently transfected ERalpha in human vascular smooth muscle cells, and translocation of ERalpha from the membrane to the nucleus in response to both estrogen-dependent and estrogen-independent stimulation. Mutational analyses identified serine 118 as the critical residue regulating nuclear localization following estrogen-independent stimulation, but not following estrogen stimulation. Induction of nuclear localization of ERalpha by estrogen-independent, but not estrogen-dependent stimulation was blocked by both pharmacologic and genetic inhibition of mitogen-activated protein (MAP) kinase activation. Furthermore, constitutive activation of MAP kinase resulted in nuclear translocation of ERalpha. These overexpression studies support that MAP kinase-mediated phosphorylation of ERalpha induces nuclear localization of the ER in response to estrogen-independent, but not estrogen-dependent stimulation, demonstrating stimulus-specific molecular pathways regulate the nuclear localization of the ER. These findings identify a previously unrecognized pathway that regulates the intracellular localization of the ER, and represent the first demonstration that the distribution of the ER between membrane and nuclear compartments is regulated by physiologic stimuli.


Assuntos
Proteínas Quinases Ativadas por Mitógeno/metabolismo , Músculo Liso Vascular/metabolismo , Receptores de Estrogênio/metabolismo , Transporte Ativo do Núcleo Celular , Substituição de Aminoácidos , Linhagem Celular , Membrana Celular/metabolismo , Estradiol/farmacologia , Receptor alfa de Estrogênio , Expressão Gênica , Proteínas de Fluorescência Verde , Humanos , Proteínas Luminescentes/genética , Proteínas Luminescentes/metabolismo , Músculo Liso Vascular/efeitos dos fármacos , Mutação Puntual , Receptores de Estrogênio/genética , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/metabolismo , Transfecção
14.
Cell Metab ; 19(5): 810-20, 2014 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-24709624

RESUMO

Thermogenic UCP1-positive cells, which include brown and beige adipocytes, transform chemical energy into heat and increase whole-body energy expenditure. Using a ribosomal profiling approach, we present a comprehensive molecular description of brown and beige gene expression from multiple fat depots in vivo. This UCP1-TRAP data set demonstrates striking similarities and important differences between these cell types, including a smooth muscle-like signature expressed by beige, but not classical brown, adipocytes. In vivo fate mapping using either a constitutive or an inducible Myh11-driven Cre demonstrates that at least a subset of beige cells arise from a smooth muscle-like origin. Finally, ectopic expression of PRDM16 converts bona fide vascular smooth muscle cells into Ucp1-positive adipocytes in vitro. These results establish a portrait of brown and beige adipocyte gene expression in vivo and identify a smooth muscle-like origin for beige cells.


Assuntos
Adipócitos/metabolismo , Tecido Adiposo Marrom/metabolismo , Músculo Liso/metabolismo , Fosfatase Ácida/genética , Fosfatase Ácida/metabolismo , Animais , Células Cultivadas , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Feminino , Expressão Gênica/genética , Canais Iônicos/genética , Canais Iônicos/metabolismo , Isoenzimas/genética , Isoenzimas/metabolismo , Camundongos , Proteínas Mitocondriais/genética , Proteínas Mitocondriais/metabolismo , Cadeias Pesadas de Miosina/genética , Cadeias Pesadas de Miosina/metabolismo , Fosfatase Ácida Resistente a Tartarato , Termogênese/genética , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Proteína Desacopladora 1
16.
Cardiovasc Revasc Med ; 11(4): 241-8, 2010.
Artigo em Inglês | MEDLINE | ID: mdl-20934657

RESUMO

OBJECTIVE: Our objective was to determine whether autologous endothelial progenitor cells (EPCs) delivered into the pericardial space will migrate to and incorporate into ischemic myocardium in a porcine model. BACKGROUND: Use of EPCs to enhance neovascularization and preserve myocardial function in ischemic tissue is undergoing intense scrutiny as a potential therapy. Delivery into the pericardial sac may overcome some of the limitations of currently employed cell delivery techniques. METHODS: EPCs were immunopurified from peripheral blood of Yorkshire pigs by selecting for the CD31 surface antigen, and adherent cells were cultured for 3-5 days. After myocardial ischemia was induced in the left anterior descending (LAD) artery, either autologous DiI (1,1'-dioctadecyl-1-3,3,3',3'-tetramethylindocarbocyanine perchlorate)-labeled EPCs (n=10) or serum-free medium (SFM; n=8) was delivered into the pericardial space using a percutaneous transatrial approach. Animals were sacrificed on Day 7 or 21. Echocardiography was performed at baseline, during ischemia, and on Day 7 in six SFM group animals and six EPC group animals. RESULTS: On Day 7, EPCs were identified in the left ventricular (LV) anterior wall or anterior septum in all six EPC-treated animals (cell density of 626 ± 122/mm(2)). On Day 21, EPCs were identified in the LV anterior wall or anterior septum in three of four EPC-treated animals (cell density of 267 ± 167/mm(2)). These cells showed dual staining for DiI and Bandeiraea simplicifolia lectin I (a marker of both native and exogenous endothelial cells). At the Day 7 follow-up, echocardiography demonstrated that fractional shortening in the EPC-treated group was 30.6 ± 3.4, compared with 22.6 ± 2.8 in SFM controls (P=.05). CONCLUSIONS: EPCs can migrate from the pericardial space to incorporate exclusively into areas of ischemic myocardium and may have favorable effects on LV function.


Assuntos
Movimento Celular , Células Endoteliais/transplante , Isquemia Miocárdica/cirurgia , Miocárdio/patologia , Transplante de Células-Tronco , Animais , Biomarcadores/metabolismo , Capilares/metabolismo , Capilares/patologia , Células Cultivadas , Modelos Animais de Doenças , Células Endoteliais/metabolismo , Células Endoteliais/patologia , Estudos de Viabilidade , Fator de Crescimento de Hepatócito/metabolismo , Separação Imunomagnética , Contração Miocárdica , Isquemia Miocárdica/diagnóstico por imagem , Isquemia Miocárdica/metabolismo , Isquemia Miocárdica/fisiopatologia , Miocárdio/metabolismo , Pericárdio , Recuperação de Função Fisiológica , Suínos , Fatores de Tempo , Ultrassonografia , Fator A de Crescimento do Endotélio Vascular/metabolismo , Função Ventricular Esquerda
17.
Proc Natl Acad Sci U S A ; 101(49): 17126-31, 2004 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-15569929

RESUMO

Steroid hormone receptors (SHRs) are ligand-activated transcription factors that regulate gene expression. SHRs also mediate rapid, nongenomic cellular activation by steroids. In vascular endothelial cells, the SHR for estrogen, estrogen receptor (ER) alpha, is targeted by unknown mechanisms to a functional signaling module in membrane caveolae that enables estrogen to rapidly activate the mitogen-activated protein kinase and phosphatidylinositol 3-Akt kinase pathways, and endothelial NO synthase (eNOS). Here we identify the 110-kDa caveolin-binding protein striatin as the molecular anchor that localizes ERalpha to the membrane and organizes the ERalpha-eNOS membrane signaling complex. Striatin directly binds to amino acids 183-253 of ERalpha, targets ERalpha to the cell membrane, and serves as a scaffold for the formation of an ERalpha-Galphai complex. Disruption of complex formation between ERalpha and striatin blocks estrogen-induced rapid activation mitogen-activated protein kinase, Akt kinase, and eNOS, but has no effect on ER-dependent regulation of an estrogen response element-driven reporter plasmid. These findings identify striatin as a molecular scaffold required for rapid, nongenomic estrogen-mediated activation of downstream signaling pathways. Furthermore, by demonstrating independent regulation of nongenomic vs. genomic ER-dependent signaling, these findings provide conceptual support for the potential development of "pathway-specific" selective ER modulators.


Assuntos
Proteínas de Ligação a Calmodulina/metabolismo , Receptor alfa de Estrogênio/fisiologia , Substâncias Macromoleculares/metabolismo , Proteínas de Membrana/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Óxido Nítrico Sintase/metabolismo , Transdução de Sinais , Proteínas de Ligação a Calmodulina/fisiologia , Cavéolas/metabolismo , Linhagem Celular , Endotélio Vascular/citologia , Ativação Enzimática , Receptor alfa de Estrogênio/metabolismo , Estrogênios/farmacologia , Humanos , Proteínas de Membrana/fisiologia , Proteínas do Tecido Nervoso/fisiologia , Óxido Nítrico Sintase Tipo III , Ligação Proteica
18.
J Biol Chem ; 278(7): 4639-45, 2003 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-12466266

RESUMO

Estrogen receptor alpha (ERalpha) mediates the effects of estrogen by altering gene expression following hormone binding. It has recently been shown that kinase-mediated phosphorylation of ERalpha also transcriptionally activates the receptor in the absence of estrogen. We now report that ERalpha-dependent gene expression also is regulated by protein phosphatase 2A (PP2A). ERalpha co-immunoprecipitates with enzymatically active PP2A. ERalpha binds directly to the catalytic subunit of PP2A, which dephosphorylates serine 118 of the receptor. Amino acids 176-182 in the A/B domain of ERalpha are required for the interaction between PP2A and the receptor. Phosphatase inhibition disrupts the ERalpha-PP2A complex and induces formation of an ERalpha-activated mitogen-activated protein kinase complex, phosphorylation of ERalpha on serine 118, and transcriptional activation. These findings demonstrate that estrogen receptors exist in complexes with phosphatases as well as kinases. We propose a new model of ligand-independent activation of estrogen receptors in which the level of phosphorylation of ERalpha, and hence its transcriptional activation, is determined by the net effect of these counterregulatory pathways.


Assuntos
Fosfoproteínas Fosfatases/metabolismo , Receptores de Estrogênio , Ativação Transcricional , Animais , Bovinos , Células Cultivadas , Receptor alfa de Estrogênio , Estrogênios/metabolismo , Humanos , Ligantes , Fosforilação , Proteína Fosfatase 2 , Ratos , Receptores de Estrogênio/genética , Receptores de Estrogênio/metabolismo , Transdução de Sinais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA