Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 35
Filtrar
1.
J Cell Mol Med ; 21(7): 1280-1291, 2017 07.
Artigo em Inglês | MEDLINE | ID: mdl-28004483

RESUMO

A growing body of evidence points towards smoking-related phenotypic differences in chronic obstructive pulmonary disease (COPD). As COPD is associated with systemic inflammation, we determined whether smoking status is related to serum levels of matrix metalloproteinase-9 (pro- and active MMP-9), neutrophil gelatinase-associated lipocalin (NGAL) and the proMMP-9/NGAL complex in patients with COPD. Serum samples were collected in 100 stable-phase COPD patients (82 smokers, 18 never-smokers) and 28 healthy adults (21 smokers, 7 never-smokers). Serum levels of studied factors were measured in ELISA. Our data provide the first evidence of simultaneously elevated serum levels of MMP-9, NGAL and proMMP-9/NGAL in COPD smokers. While the triad discriminated between smokers and non-smokers in the COPD group, MMP-9 and proMMP-9/NGAL (but not NGAL) discriminated between smokers with and without COPD. Adjustment for age and smoking pack-years did not alter the findings. Serum MMP-9, NGAL and proMMP-9/NGAL levels were not correlated with the GOLD stage or FEV1 decline. Furthermore, serum levels of neutrophil elastase (NE) and MMP-3 (but not of IL-6 and MMP-12) were also higher in COPD smokers than in healthy smokers before and after adjustment for age and pack-years. Among COPD smokers, levels of MMP-9, NGAL and proMMP-9/NGAL were positively correlated with NE (P < 0.0001) but not with the remaining factors. Gelatin zymography detected proMMP-9 in serum samples of healthy and COPD smoking groups. Our results suggest that associated serum levels of proMMP-9, NGAL, proMMP-9/NGAL and NE may reflect the state of systemic inflammation in COPD related to cigarette smoking.


Assuntos
Elastase de Leucócito/sangue , Lipocalina-2/sangue , Metaloproteinase 9 da Matriz/sangue , Doença Pulmonar Obstrutiva Crônica/sangue , Adulto , Idoso , Precursores Enzimáticos/sangue , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Complexos Multiproteicos/sangue , Doença Pulmonar Obstrutiva Crônica/patologia , Fumantes , Fumar/efeitos adversos , Fumar/sangue
2.
Crit Care Med ; 45(9): e954-e962, 2017 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-28445239

RESUMO

OBJECTIVES: Vascular mineralocorticoid receptors play a role in vascular tone and blood pressure regulation, might participate in the pathophysiology of circulatory failure during sepsis, and represent a potential therapeutic target in this disease. We aimed to study the effects of mineralocorticoids and the involvement of vascular mineralocorticoid receptors in murine endotoxic and human septic shock. DESIGN: Experimental study. SETTING: Translational investigation including animal research and in vitro experiments using human vascular cells and plasma from septic patients. SUBJECTS: Adult male C57Black 6 mice, adult patients with septic shock. INTERVENTIONS: Mice were injected with lipopolysaccharide and/or aldosterone. Human endothelial and smooth muscle cells were treated with pro-inflammatory cytokines with or without aldosterone, nuclear factor-κB inhibitor BAY 11-7082, or plasma from septic patients. MEASUREMENTS AND MAIN RESULTS: Aldosterone improved 5-day survival, invasive arterial pressure, and in vivo and ex vivo arterial response to phenylephrine at 18 hours after induction of murine endotoxic shock. Both α1-adrenoceptor and mineralocorticoid receptor expressions studied in mouse aortas were down-regulated at 6 and 18 hours in endotoxemic mice and restored in aldosterone-treated mice. Furthermore, tumor necrosis factor-α decreased both mineralocorticoid receptor and α1-adrenoceptor expressions within 5 hours in human vascular cells in a nuclear factor-κB pathway-dependent manner. Mineralocorticoid receptor expression was also blunted in human cells treated with plasma from septic patients. CONCLUSION: We found a beneficial effect of mineralocorticoids on survival, blood pressure, and vascular reactivity, associated with a restoration of α1-adrenoceptor expression in endotoxic shock. Furthermore, blunted vascular mineralocorticoid receptor expression might participate in hemodynamic failure during sepsis.


Assuntos
Aldosterona/farmacologia , Nitrilas/farmacologia , Receptores de Mineralocorticoides/biossíntese , Choque Séptico/tratamento farmacológico , Choque Séptico/fisiopatologia , Sulfonas/farmacologia , Animais , Pressão Sanguínea , Citocinas/farmacologia , Modelos Animais de Doenças , Regulação para Baixo , Endotoxinas , Humanos , Mediadores da Inflamação/farmacologia , Lipopolissacarídeos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , NF-kappa B/antagonistas & inibidores , Choque Séptico/mortalidade
3.
Biochim Biophys Acta ; 1833(6): 1316-28, 2013 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-23481040

RESUMO

Acute myeloid leukemia (AML) is a deadly disease characterized by the clonal expansion and accumulation of hematopoietic stem cells arrested at various stages of development. Clinical research efforts are currently focusing on targeted therapies that induce apoptosis in AML cells. Herein, the effects and mechanisms of the novel flavone 3,3'-diamino-4'-methoxyflavone (DD1) on AML cell dysfunction were investigated in AML cells (monoblast U937, myelomonocyte OCI-AML3, promyelocyte NB4, myeloblast HL-60) and blood samples from patients with AML. The administration of DD1 inhibited proliferation and induced death of AML cell lines and reduced the clonogenic activity of AML, but not normal, blood cells. The flavone's apoptotic action in U937 cells was associated with recruitment of mitochondria, Bax activation, Bad dephosphorylation (at Ser(136)), activation of caspases -8, -9, and -3 and cleavage of the caspase substrate PARP-1. DD1 induced a marked decrease in (i) Thr(389)-phosphorylation and (ii) protein levels of the caspase-3 substrate P70 ribosomal S6 kinase (P70S6K, known for its ability to phosphorylate Bad). Caspase-dependent apoptosis and P70S6K degradation were simultaneously prevented by the caspase inhibitors. Importantly, DD1 was shown to directly inhibit the proteasome's chymotrypsin-like activity in U937 cells. Apoptotic activity of the proteasome inhibitor bortezomib was also related to Bax activation and P70S6K downregulation. Accordingly, DD1 failed to induce P70S6K cleavage, Bax stimulation and apoptosis in K562 cells resistant to bortezomib. These results indicate that DD1 has the potential to eradicate AML cells and support a critical role for Bax and P70S6K in DD1-mediated proteasome inhibition and apoptosis of leukemia cells.


Assuntos
Apoptose/efeitos dos fármacos , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Flavonoides/farmacologia , Leucemia Mieloide Aguda/patologia , Inibidores de Proteassoma/farmacologia , Proteínas Quinases S6 Ribossômicas 70-kDa/antagonistas & inibidores , Adulto , Idoso , Idoso de 80 Anos ou mais , Antineoplásicos/farmacologia , Protocolos de Quimioterapia Combinada Antineoplásica , Western Blotting , Ácidos Borônicos/farmacologia , Bortezomib , Caspases/metabolismo , Ciclo Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Ensaio de Unidades Formadoras de Colônias , Flavonoides/química , Citometria de Fluxo , Humanos , Técnicas Imunoenzimáticas , Leucemia Mieloide Aguda/tratamento farmacológico , Leucemia Mieloide Aguda/metabolismo , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Pessoa de Meia-Idade , Fosforilação/efeitos dos fármacos , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Pirazinas/farmacologia , Proteínas Quinases S6 Ribossômicas 70-kDa/metabolismo , Células Tumorais Cultivadas , Proteína X Associada a bcl-2/metabolismo
4.
Biochimie ; 2024 Jul 14.
Artigo em Inglês | MEDLINE | ID: mdl-39009062

RESUMO

Chronic lymphocytic leukaemia (CLL) is a heterogenous disease characterized by the accumulation of neoplastic CD5+/CD19+ B lymphocytes. The spreading of the leukaemia relies on the CLL cell's ability to survive in the blood and migrate to and proliferate within the bone marrow and lymphoid tissues. Some patients with CLL are either refractory to the currently available therapies or relapse after treatment; this emphasizes the need for novel therapeutic strategies that improving clinical responses and overcome drug resistance. CD38 is a marker of a poor prognosis and governs a set of survival, proliferation and migration signals that contribute to the pathophysiology of CLL. The literature data evidence a spatiotemporal association between the cell surface expression of CD38 and that of other CLL antigens, such as the B-cell receptor (BCR), CD19, CD26, CD44, the integrin very late antigen 4 (VLA4), the chemokine receptor CXCR4, the vascular endothelial growth factor receptor-2 (VEGF-R2), and the neutrophil gelatinase-associated lipocalin receptor (NGAL-R). Most of these proteins contribute to CLL cell survival, proliferation and trafficking, and cooperate with CD38 in multilayered signal transduction processes. In general, these antigens have already been validated as therapeutic targets in cancer, and a broad repertoire of specific monoclonal antibodies and derivatives are available. Here, we review the state of the art in this field and examine the therapeutic opportunities for cotargeting CD38 and its partners in CLL, e.g. by designing novel bi-/trispecific antibodies.

5.
Leukemia ; 38(2): 302-317, 2024 02.
Artigo em Inglês | MEDLINE | ID: mdl-38057495

RESUMO

Chronic lymphocytic leukemia (CLL) is still an incurable disease, with many patients developing resistance to conventional and targeted therapies. To better understand the physiology of CLL and facilitate the development of innovative treatment options, we examined specific metabolic features in the tumor CLL B-lymphocytes. We observed metabolic reprogramming, characterized by a high level of mitochondrial oxidative phosphorylation activity, a low glycolytic rate, and the presence of C2- to C6-carnitine end-products revealing an unexpected, essential role for peroxisomal fatty acid beta-oxidation (pFAO). Accordingly, downmodulation of ACOX1 (a rate-limiting pFAO enzyme overexpressed in CLL cells) was enough to shift the CLL cells' metabolism from lipids to a carbon- and amino-acid-based phenotype. Complete blockade of ACOX1 resulted in lipid droplet accumulation and caspase-dependent death in CLL cells, including those from individuals with poor cytogenetic and clinical prognostic factors. In a therapeutic translational approach, ACOX1 inhibition spared non-tumor blood cells from CLL patients but led to the death of circulating, BCR-stimulated CLL B-lymphocytes and CLL B-cells receiving pro-survival stromal signals. Furthermore, a combination of ACOX1 and BTK inhibitors had a synergistic killing effect. Overall, our results highlight a less-studied but essential metabolic pathway in CLL and pave the way towards the development of new, metabolism-based treatment options.


Assuntos
Leucemia Linfocítica Crônica de Células B , Humanos , Linfócitos B/metabolismo , Ácidos Graxos/metabolismo , Ácidos Graxos/uso terapêutico , Leucemia Linfocítica Crônica de Células B/patologia , Reprogramação Metabólica , Mitocôndrias/metabolismo
6.
Biochim Biophys Acta ; 1825(1): 29-36, 2012 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-22020293

RESUMO

This review focuses on matrix metalloproteinases (MMPs)-2 (gelatinase A) and -9 (gelatinase B), both of which are cancer-associated, secreted, zinc-dependent endopeptidases. Gelatinases cleave many different targets (extracellular matrix, cytokines, growth factors, chemokines and cytokine/growth factor receptors) that in turn regulate key signaling pathways in cell growth, migration, invasion, inflammation and angiogenesis. Interactions with cell surface integral membrane proteins (CD44, αVß/αß1/αß2 integrins and Ku protein) can occur through the gelatinases' active site or hemopexin-like C-terminal domain. This review evaluates the recent literature on the non-enzymatic, signal transduction roles of surface-bound gelatinases and their subsequent effects on cell survival, migration and angiogenesis. Gelatinases have long been drug targets. The current status of gelatinase inhibitors as anticancer agents and their failure in the clinic is discussed in light of these new data on the gelatinases' roles as cell surface transducers - data that may lead to the design and development of novel, gelatinase-targeting inhibitors.


Assuntos
Membrana Celular/metabolismo , Metaloproteinase 2 da Matriz/fisiologia , Metaloproteinase 9 da Matriz/fisiologia , Neoplasias/enzimologia , Biomarcadores Tumorais/análise , Progressão da Doença , Humanos , Metaloproteinase 2 da Matriz/metabolismo , Metaloproteinase 9 da Matriz/metabolismo , Inibidores de Metaloproteinases de Matriz , Transdução de Sinais
7.
Cancers (Basel) ; 15(8)2023 Apr 14.
Artigo em Inglês | MEDLINE | ID: mdl-37190234

RESUMO

In addition to intrinsic genomic and nongenomic alterations, tumor progression is also dependent on the tumor microenvironment (TME, mainly composed of the extracellular matrix (ECM), secreted factors, and bystander immune and stromal cells). In chronic lymphocytic leukemia (CLL), B cells have a defect in cell death; contact with the TME in secondary lymphoid organs dramatically increases the B cells' survival via the activation of various molecular pathways, including the B cell receptor and CD40 signaling. Conversely, CLL cells increase the permissiveness of the TME by inducing changes in the ECM, secreted factors, and bystander cells. Recently, the extracellular vesicles (EVs) released into the TME have emerged as key arbiters of cross-talk with tumor cells. The EVs' cargo can contain various bioactive substances (including metabolites, proteins, RNA, and DNA); upon delivery to target cells, these substances can induce intracellular signaling and drive tumor progression. Here, we review recent research on the biology of EVs in CLL. EVs have diagnostic/prognostic significance and clearly influence the clinical outcome of CLL; hence, from the perspective of blocking CLL-TME interactions, EVs are therapeutic targets. The identification of novel EV inhibitors might pave the way to the development of novel combination treatments for CLL and the optimization of currently available treatments (including immunotherapy).

8.
Biomedicines ; 11(9)2023 Aug 22.
Artigo em Inglês | MEDLINE | ID: mdl-37760777

RESUMO

Chronic lymphocytic leukemia (CLL) is characterized by the accumulation of neoplastic B lymphocytes that escape death, and correlates with the expression of negative prognostic markers such as the CD38 antigen. Although certain new drugs approved by the US Food and Drug Administration improve the clinical outcome of CLL patients, drug resistance and disease relapse still occur. Like CD38, neutrophil gelatinase-associated lipocalin receptor (NGAL-R) is frequently overexpressed in CLL cells. Here, we evaluated the concomitant surface expression of NGAL-R and CD38 in leukemic blood cells from 52 CLL patients (37 untreated, 8 in clinical remission, and 7 relapsed). We provide evidence of a positive correlation between NGAL-R and CD38 levels both in the interpatient cohorts (p < 0.0001) and in individual patients, indicating a constitutive association of NGAL-R and CD38 at the cell level. Patients with progressing CLL showed a time-dependent increase in NGAL-R/CD38 levels. In treated CLL patients who achieved clinical remission, NGAL-R/CD38 levels were decreased, and were significantly lower than in the untreated and relapsed groups (p < 0.02). As NGAL-R and CD38 participate in CLL cell survival, envisioning their simultaneous inhibition with bispecific NGAL-R/CD38 antibodies capable of inducing leukemic cell death might provide therapeutic benefit for CLL patients.

9.
Food Sci Nutr ; 11(5): 2099-2105, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-37181314

RESUMO

Epidemiologic studies keep up the proposition that Allium vegetables can lower the risk of cancers. Acute myeloid leukemia (AML) cells exhibit high proliferative potency and have a reduced capacity of undergoing apoptosis and maturation. The beneficial effects of Allium seem related to the organosulfur products generated upon processing of these species. For this purpose, the aim of this study was to test Allium roseum fresh (FAE), crude (CAE) and dried (DAE) aqueous extracts for activity against the human acute leukemia cell line (U937). As assessed by flow cytometry, inhibited cell proliferation was in a dose-dependent manner. Firstly, study showed that cell growth was inhibited with 20 mg/mL using FAE and CAE (60% and 73% respectively). Secondly, our experiments clearly indicate that all A. roseum extracts do not induce cell apoptosis. This was confirmed by the soft binding of Annexin V to phosphatidylserine. Finally, the high expression of macrophage's marker CD11 associated with adequate morphological changes proves clearly the differentiation aspect produced by A. roseum extract. Taken together, these data suggest that A. roseum could be a promising candidate for the alternative medicine in the field of cancer therapy.

10.
FASEB J ; 25(8): 2831-42, 2011 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-21566207

RESUMO

The transmembrane metalloprotease aminopeptidase-N (APN)/CD13 is overexpressed in various solid and hematological malignancies in humans, including acute myeloid leukemia (AML) and is thought to influence tumor progression. Here, we investigated the contribution of APN/CD13 to the regulation of growth and survival processes in AML cells in vitro. Anti-CD13 monoclonal antibodies MY7 and SJ1D1 (which do not inhibit APN activity) and WM15 (an APN-blocking antibody) inhibited the growth of the AML cell line U937 and induced apoptosis, as evidenced by cell accumulation in the sub-G(1) phase, DNA fragmentation, and phosphatidylserine externalization. Isotype-matched IgG1 and the APN/CD13 enzymatic inhibitors bestatin and 2',3-dinitroflavone-8-acetic acid, were ineffective. Internalization of CD13-MY7 complex into cells was followed by mitochondrial membrane depolarization, Bcl-2 and Mcl-1 down-regulation, Bax up-regulation, caspase-9, caspase-8, and caspase-3 activation, and cleavage of the caspase substrate PARP-1. The broad-spectrum caspase inhibitor Z-VAD-fmk and the caspase-9- and caspase-8-specific inhibitors significantly attenuated apoptosis. CD13 ligation also induced apoptosis and PARP-1 cleavage in primary AML blasts, whereas normal blood cells were not affected. Overall, these data provide new evidence that CD13 can serve as a target for inducing caspase-dependent apoptosis in AML (independently of its APN activity). These findings may have implications for tumor biology and treatment.


Assuntos
Antígenos CD13/antagonistas & inibidores , Leucemia Mieloide Aguda/enzimologia , Leucemia Mieloide Aguda/patologia , Adulto , Idoso , Idoso de 80 Anos ou mais , Anticorpos Monoclonais/farmacologia , Apoptose/efeitos dos fármacos , Apoptose/fisiologia , Antígenos CD13/imunologia , Antígenos CD13/fisiologia , Caspases/metabolismo , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Inibidores Enzimáticos/farmacologia , Feminino , Humanos , Técnicas In Vitro , Leucemia Mieloide Aguda/terapia , MAP Quinase Quinase 1/antagonistas & inibidores , Masculino , Potencial da Membrana Mitocondrial , Pessoa de Meia-Idade , Proteína de Sequência 1 de Leucemia de Células Mieloides , Inibidores de Fosfoinositídeo-3 Quinase , Poli(ADP-Ribose) Polimerase-1 , Poli(ADP-Ribose) Polimerases/metabolismo , Inibidores de Proteases/farmacologia , Proteínas Proto-Oncogênicas c-akt/antagonistas & inibidores , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Células U937 , Adulto Jovem , Proteína X Associada a bcl-2/metabolismo
11.
Cancers (Basel) ; 14(3)2022 Jan 26.
Artigo em Inglês | MEDLINE | ID: mdl-35158891

RESUMO

Cell surface proteases (also known as ectoproteases) are transmembrane and membrane-bound enzymes involved in various physiological and pathological processes. Several members, most notably dipeptidyl peptidase 4 (DPP4/CD26) and its related family member fibroblast activation protein (FAP), aminopeptidase N (APN/CD13), a disintegrin and metalloprotease 17 (ADAM17/TACE), and matrix metalloproteinases (MMPs) MMP2 and MMP9, are often overexpressed in cancers and have been associated with tumour dysfunction. With multifaceted actions, these ectoproteases have been validated as therapeutic targets for cancer. Numerous inhibitors have been developed to target these enzymes, attempting to control their enzymatic activity. Even though clinical trials with these compounds did not show the expected results in most cases, the field of ectoprotease inhibitors is growing. This review summarizes the current knowledge on this subject and highlights the recent development of more effective and selective drugs targeting ectoproteases among which small molecular weight inhibitors, peptide conjugates, prodrugs, or monoclonal antibodies (mAbs) and derivatives. These promising avenues have the potential to deliver novel therapeutic strategies in the treatment of cancers.

12.
Cancers (Basel) ; 14(24)2022 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-36551511

RESUMO

Resistance to death is one of the hallmarks of human B cell malignancies and often contributes to the lack of a lasting response to today's commonly used treatments. Drug discovery approaches designed to activate the death machinery have generated a large number of inhibitors of anti-apoptotic proteins from the B-cell lymphoma/leukemia 2 family and the B-cell receptor (BCR) signaling pathway. Orally administered small-molecule inhibitors of Bcl-2 protein and BCR partners (e.g., Bruton's tyrosine kinase and phosphatidylinositol-3 kinase) have already been included (as monotherapies or combination therapies) in the standard of care for selected B cell malignancies. Agonistic monoclonal antibodies and their derivatives (antibody-drug conjugates, antibody-radioisotope conjugates, bispecific T cell engagers, and chimeric antigen receptor-modified T cells) targeting tumor-associated antigens (TAAs, such as CD19, CD20, CD22, and CD38) are indicated for treatment (as monotherapies or combination therapies) of patients with B cell tumors. However, given that some patients are either refractory to current therapies or relapse after treatment, novel therapeutic strategies are needed. Here, we review current strategies for managing B cell malignancies, with a focus on the ongoing clinical development of more effective, selective drugs targeting these molecules, as well as other TAAs and signaling proteins. The observed impact of metabolic reprogramming on B cell pathophysiology highlights the promise of targeting metabolic checkpoints in the treatment of these disorders.

13.
Biomedicines ; 9(2)2021 Feb 13.
Artigo em Inglês | MEDLINE | ID: mdl-33668421

RESUMO

Besides their antiviral and immunomodulatory functions, type I (α/ß) and II (γ) interferons (IFNs) exhibit either beneficial or detrimental effects on tumor progression. Chronic lymphocytic leukemia (CLL) is characterized by the accumulation of abnormal CD5+ B lymphocytes that escape death. Drug resistance and disease relapse still occur in CLL. The triggering of IFN receptors is believed to be involved in the survival of CLL cells, but the underlying molecular mechanisms are not yet characterized. We show here that both type I and II IFNs promote the survival of primary CLL cells by counteracting the mitochondrial (intrinsic) apoptosis pathway. The survival process was associated with the upregulation of signal transducer and activator of transcription-3 (STAT3) and its target anti-apoptotic Mcl-1. Furthermore, the blockade of the STAT3/Mcl-1 pathway by pharmacological inhibitors against STAT3, TYK2 (for type I IFN) or JAK2 (for type II IFN) markedly reduced IFN-mediated CLL cell survival. Similarly, the selective Src family kinase inhibitor PP2 notably blocked IFN-mediated CLL cell survival by downregulating the protein levels of STAT3 and Mcl-1. Our work reveals a novel mechanism of resistance to apoptosis promoted by IFNs in CLL cells, whereby JAKs (TYK2, JAK2) and Src kinases activate in concert a STAT3/Mcl-1 signaling pathway. In view of current clinical developments of potent STAT3 and Mcl-1 inhibitors, a combination of conventional treatments with these inhibitors might thus constitute a new therapeutic strategy in CLL.

14.
Cancers (Basel) ; 12(8)2020 Jul 31.
Artigo em Inglês | MEDLINE | ID: mdl-32751884

RESUMO

The resistance to apoptosis of chronic lymphocytic leukemia (CLL) cells partly results from the deregulated production of survival signals from leukemic cells. Despite the development of new therapies in CLL, drug resistance and disease relapse still occur. Recently, neutrophil gelatinase-associated lipocalin (NGAL), a secreted glycoprotein, has been suggested to have a critical role in the biology of tumors. Thus, we investigated the relevance of NGAL in CLL pathogenesis, analyzed the expression of its cellular receptor (NGAL-R) on malignant B cells and tested whether CLL cells are resistant to apoptosis through an autocrine process involving NGAL and NGAL-R. We observed that NGAL concentrations were elevated in the serum of CLL patients at diagnosis. After treatment (and regardless of the therapeutic regimen), serum NGAL levels normalized in CLL patients in remission but not in relapsed patients. In parallel, NGAL and NGAL-R were upregulated in leukemic cells from untreated CLL patients when compared to normal peripheral blood mononuclear cells (PBMCs), and returned to basal levels in PBMCs from patients in remission. Cultured CLL cells released endogenous NGAL. Anti-NGAL-R antibodies enhanced NGAL-R+ leukemia cell death. Conversely, recombinant NGAL protected NGAL-R+ CLL cells against apoptosis by activating a STAT3/Mcl-1 signaling pathway. Our results suggest that NGAL and NGAL-R, overexpressed in untreated CLL, participate in the deregulation of the apoptotic machinery in CLL cells, and may be potential therapeutic clues for CLL treatment.

15.
Cancers (Basel) ; 10(9)2018 Sep 18.
Artigo em Inglês | MEDLINE | ID: mdl-30231474

RESUMO

Human neutrophil gelatinase-associated lipocalin (NGAL) is a glycoprotein present in a wide variety of tissues and cell types. NGAL exists as a 25 kDa monomer, a 46 kDa homodimer (the most abundant form in healthy subjects) and a 130 kDa disulfide-linked heterodimer bound to latent matrix metalloproteinase-9. Dysregulated expression of NGAL in human malignancies suggests its value as a clinical marker. A growing body of evidence is highlighting NGAL's paradoxical (i.e., both beneficial and detrimental) effects on cellular processes associated with tumor development (proliferation, survival, migration, invasion, and multidrug resistance). At least two distinct cell surface receptors are identified for NGAL. This review (i) summarizes our current knowledge of NGAL's expression profiles in solid tumors and leukemias, and (ii) critically evaluates the beneficial and detrimental activities of NGAL having been documented in a diverse range of cancer-derived cell lines. A better understanding of the causal relationships between NGAL dysregulation and tumor development will require a fine analysis of the molecular aspects and biological role(s) of NGAL both in primary tumors and at different stages of disease. Having an accurate picture of NGAL's contribution to tumor progression is a prerequisite for attempting to modulate this protein as a putative therapeutic target.

16.
Immunol Lett ; 106(1): 34-41, 2006 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-16720051

RESUMO

Matrix metalloproteinase-9 (MMP-9), through its catalytic and non-catalytic activities, plays critical roles in inflammation, tumor invasion and angiogenesis. Human monocytes actively involved in inflammatory and tumoral states secrete proMMP-9 (92kDa). Endogenous TNF-alpha stimulates MMP-9 gene transcription in monocytes through NF-kappaB activation. In this study, we investigated the intracellular signaling pathways underlying TNF-alpha/NF-kappaB-dependent expression of MMP-9 in monocytes using chemical inhibitors that specifically inhibit distinct kinase pathways. We confirmed the expression of MMP-9 by reverse transcription chain reaction (RT-PCR), ELISA and gelatin zymography. PGE2/cAMP inhibitor indomethacin, PI-3K inhibitor wortmannin, PKC inhibitor bisindolylmaleimide and PKA inhibitor H-89 did not affect the levels of released MMP-9. In contrast, MMP-9 mRNA and protein expression was down-regulated by p38 MAPK inhibitor SB203580 and protein tyrosine kinase (PTK) inhibitor tyrphostin 25. These inhibitors increased IkappaB-alpha levels, which correlate with decreased NF-kappaB activation. Although SB203580 induced a decrease in TNF-alpha release, addition of exogenous TNF-alpha did not reverse the inhibitory effect of SB203580 toward MMP-9 thus suggesting that SB203580 could modulate down-stream effects of TNF-alpha. In parallel, TIMP-1 levels decreased in the presence of SB203580. Both kinase inhibitors did not influence the maturation pathway of monocytes. Our results indicate that these two inhibitors of p38 MAPK and PTK pathways could be used as combined targets for inhibiting MMP-9 expression in inflamed tissues.


Assuntos
Metaloproteinase 9 da Matriz/metabolismo , Monócitos/enzimologia , Proteínas Tirosina Quinases/metabolismo , Transdução de Sinais , Fator de Necrose Tumoral alfa/metabolismo , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo , Adulto , Adesão Celular/efeitos dos fármacos , Diferenciação Celular/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Células Cultivadas , Regulação para Baixo/efeitos dos fármacos , Humanos , Quinase I-kappa B/metabolismo , Imidazóis/farmacologia , Metaloproteinase 9 da Matriz/genética , Pessoa de Meia-Idade , Monócitos/citologia , Monócitos/efeitos dos fármacos , Monócitos/metabolismo , Fenótipo , Inibidores de Proteínas Quinases/farmacologia , Processamento de Proteína Pós-Traducional , Piridinas/farmacologia , Transdução de Sinais/efeitos dos fármacos , Inibidor Tecidual de Metaloproteinase-1/metabolismo , Fator de Necrose Tumoral alfa/genética , Tirfostinas/farmacologia , Proteínas Quinases p38 Ativadas por Mitógeno/antagonistas & inibidores
17.
Oncotarget ; 7(15): 19445-67, 2016 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-26655501

RESUMO

The CD13 antigen's binding site for the Asn-Gly-Arg (NGR) motif enables NGR-containing chemotherapeutic drugs to be delivered to CD13-positive tumours. Human CD13-positive acute myeloid leukemia (AML) cells proliferate abnormally and escape death. Here, we show that the CNGRC-GG-D(KLAKLAK)2 peptide induces death in AML cell lines (U937, THP-1, NB4, HL-60) and primary blood cells from AML patients. Cell death was characterized as a caspase-independent mechanism, without DNA fragmentation, but phosphatidylserine externalization and membrane disruption. Our results demonstrate in U937 cells that (i) the NGR-peptide triggers the loss of mitochondrial potential(ΔΨm) and generates superoxide anion (O2-), (ii) N-acetyl-L-cysteine (NAC) and extra/intracellular Ca2+ chelators (BAPTA) prevent both O2- production and cell death, (iii) the Ca2+-channel blocker nifedipine prevents cell death (indicating that Ca2+ influx is the initial death trigger), and (iv) BAPTA, but not NAC, prevents ΔΨm loss (suggesting O2- is a mitochondrial downstream effector). AML cell lines and primary blasts responding to the lethal action of NGR-peptide express promatrix metalloproteinase-12 (proMMP-12) and its substrate progranulin (an 88 kDa cell survival factor). A cell-free assay highlighted proMMP-12 activation by O2-. Accordingly, NGR-peptide's downregulation of 88 kDa progranulin protein was prevented by BAPTA and NAC. Conversely, AML blast resistance to NGR-peptide is associated with the expression of a distinct, 105 kDa progranulin isoform. These results indicate that CNGRC-GG-D(KLAKLAK)2 induces death in AML cells through the Ca2+-mitochondria-O2.-pathway, and support the link between proMMP-12 activation and progranulin cleavage during cell death. Our findings may have implications for the understanding of tumour biology and treatment.


Assuntos
Apoptose/efeitos dos fármacos , Antígenos CD13/metabolismo , Cálcio/metabolismo , Peptídeos/farmacologia , Doença Aguda , Sequência de Aminoácidos , Caspases/metabolismo , Linhagem Celular Tumoral , Regulação para Baixo/efeitos dos fármacos , Células HL-60 , Humanos , Immunoblotting , Peptídeos e Proteínas de Sinalização Intercelular/metabolismo , Leucemia Mieloide/metabolismo , Leucemia Mieloide/patologia , Metaloproteinase 12 da Matriz/metabolismo , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Progranulinas , Superóxidos/metabolismo , Células U937
18.
J Clin Endocrinol Metab ; 101(1): 293-304, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26583585

RESUMO

CONTEXT: Extracellular matrix (ECM) in sc adipose tissue (scAT) undergoes pathological remodeling during obesity. However, its evolution during weight loss remains poorly explored. OBJECTIVE: The objective of the investigation was to study the histological, transcriptomic, and physical characteristics of scAT ECM remodeling during the first year of bariatric surgery (BS)-induced weight loss and their relationships with metabolic and bioclinical improvements. DESIGN, SETTING, PATIENTS, AND INTERVENTIONS: A total of 118 morbidly obese candidates for BS were recruited and followed up during 1 year after BS. MAIN OUTCOME MEASURES: scAT surgical biopsy and needle aspiration as well as scAT stiffness measurement were performed in three subgroups before and after BS. Fourteen nonobese, nondiabetic subjects served as controls. RESULTS: Significantly increased picrosirius-red-stained collagen accumulation in scAT after BS was observed along with fat mass loss, despite metabolic and inflammatory improvements and undetectable changes of scAT stiffness. Collagen accumulation positively associated with M2-macrophages (CD163(+) cells) before BS but negatively afterward. Expression levels of genes encoding ECM components (eg, COL3A1, COL6A1, COL6A2, ELN), cross-linking enzymes (eg, lysyl oxidase [LOX], LOXL4, transglutaminase), metalloproteinases, and their inhibitors were modified 1 year after BS. LOX expression and protein were significantly decreased and associated with decreased fat mass as well as other cross-linking enzymes. Although total collagen I and VI staining decreased 1 year after BS, we found increased degraded collagen I and III in scAT, suggesting increased degradation. CONCLUSIONS: After BS-induced weight loss and related metabolic improvements, scAT displays major collagen remodeling with an increased picrosirius-red staining that relates to increased collagen degradation and importantly decreased cross-linking. These features are in agreement with adequate ECM adaptation during fat mass loss.


Assuntos
Cirurgia Bariátrica , Colágeno/metabolismo , Gordura Subcutânea/metabolismo , Adulto , Composição Corporal , Técnicas de Imagem por Elasticidade , Matriz Extracelular/metabolismo , Proteínas da Matriz Extracelular/metabolismo , Feminino , Humanos , Macrófagos/metabolismo , Masculino , Pessoa de Meia-Idade , Obesidade Mórbida/metabolismo , Obesidade Mórbida/cirurgia , Transcriptoma , Rigidez Vascular , Redução de Peso
19.
Oncogene ; 23(2): 317-29, 2004 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-14724562

RESUMO

Transmembrane proteases (TPs) are proteins anchored in the plasma membrane with their catalytic site exposed to the external surface of the membrane. TPs are widely expressed, and their dysregulated expression is associated with cancer, infection, inflammation, autoimmune and cardiovascular diseases, all diseases where angiogenesis is part of the pathology. TPs participate in extracellular proteolysis (degradation of extracellular matrix components, regulation of chemokine activity, release of membrane-anchored cytokines, cytokine receptors and adhesion molecules) and influence cell functions (growth, secretion of angiogenic molecules, motility). Recent attention has been focused on the ADAM-17 (a disintegrin and metalloprotease)/TACE/CD156q, the MT1-MMP (membrane-type-1 matrix metallo proteinase)/MMP-14, and the ectopeptidases aminopeptidase N (APN/CD13), dipeptidyl peptidase IV (DPPIV/CD26) and angiotensin-converting enzyme (ACE/CD143), that appear to have a critical role in angiogenesis. This article summarizes current knowledge on these TPs, and reviews recent investigations that document their participation during angiogenic-related events. Through their multiple roles, TPs may thereby provide critical links in angiogenesis.


Assuntos
Endopeptidases/metabolismo , Proteínas de Membrana/metabolismo , Invasividade Neoplásica , Neoplasias/irrigação sanguínea , Neoplasias/patologia , Neovascularização Patológica/enzimologia , Animais , Divisão Celular , Endopeptidases/química , Humanos , Metaloproteinases da Matriz/química , Metaloproteinases da Matriz/metabolismo , Proteínas de Membrana/química , Neoplasias/enzimologia , Neoplasias/metabolismo
20.
FEBS Lett ; 579(25): 5487-93, 2005 Oct 24.
Artigo em Inglês | MEDLINE | ID: mdl-16213498

RESUMO

Cytokines may provide signals for regulating human monocyte matrix metalloproteinase-9 (MMP-9) activity. In this study, we investigated the roles of interferons (IFN) type I/II and transforming growth factor-beta1 (TGF-beta1) in MMP-9-mediated invasiveness. MMP-9 antibody and inhibitor, IFNs and TGF-beta1 inhibited monocyte transmigration through Matrigel. IFNs and TGF-beta1 downregulated MMP-9 mRNA, protein and activity levels. The inhibitory action of IFNs was associated with the STAT1/IRF-1 pathway since the JAK inhibitor AG490 blocked STAT1 phosphorylation, IRF-1 synthesis and counteracted the blockade of MMP-9 release. TGF-beta1-mediated MMP-9 inhibition appeared STAT1/IRF-1-independent but reversed by the protein tyrosine kinase inhibitor tyrphostin 25. Our data point out the importance of IFNs and TGF-beta1 in the control of monocyte MMP-9-mediated extravasation.


Assuntos
Movimento Celular , Interferons/farmacologia , Inibidores de Metaloproteinases de Matriz , Monócitos/enzimologia , Fator de Crescimento Transformador beta/farmacologia , Movimento Celular/efeitos dos fármacos , Células Cultivadas , Colágeno/metabolismo , Combinação de Medicamentos , Humanos , Laminina/metabolismo , Monócitos/efeitos dos fármacos , Transporte Proteico , Proteoglicanas/metabolismo , Transdução de Sinais , Fator de Crescimento Transformador beta1 , Fator de Necrose Tumoral alfa/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA