Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
1.
BMC Microbiol ; 16(1): 192, 2016 08 22.
Artigo em Inglês | MEDLINE | ID: mdl-27549081

RESUMO

BACKGROUND: Antimicrobial peptides (AMPs) are a class of antimicrobial agents with broad-spectrum activities. Several reports indicate that cationic AMPs bind to the negatively charged bacterial membrane causing membrane depolarization and damage. However, membrane depolarization and damage may be insufficient to elicit cell death, thereby suggesting that other mechanism(s) of action could be involved in this phenomenon. In this study, we investigated the antimicrobial activity of a novel antimicrobial peptide, TP359, against two strains of Pseudomonas aeruginosa, as well as its possible mechanisms of action. RESULTS: TP359 proved to be bactericidal against P. aeruginosa as confirmed by the reduced bacteria counts, membrane damage and cytoplasmic membrane depolarization. In addition, it was non-toxic to mouse J774 macrophages and human lung A549 epithelial cells. Electron microscopy analysis showed TP359 bactericidal effects by structural changes of the bacteria from viable rod-shaped cells to those with cell membrane damages, proceeding into the efflux of cytoplasmic contents and emergence of ghost cells. Gene expression analysis on the effects of TP359 on outer membrane biogenesis genes underscored marked down-regulation, particularly of oprF, which encodes a major structural and outer membrane porin (OprF) in both strains studied, indicating that the peptide may cause deregulation of outer membrane genes and reduced structural stability which could lead to cell death. CONCLUSION: Our data shows that TP359 has potent antimicrobial activity against P aeruginosa. The correlation between membrane damage, depolarization and reduced expression of outer membrane biogenesis genes, particularly oprF may suggest the bactericidal mechanism of action of the TP359 peptide.


Assuntos
Peptídeos Catiônicos Antimicrobianos/farmacologia , Proteínas da Membrana Bacteriana Externa/biossíntese , Pseudomonas aeruginosa/efeitos dos fármacos , Pseudomonas aeruginosa/genética , Células A549 , Animais , Antibacterianos/química , Antibacterianos/farmacologia , Peptídeos Catiônicos Antimicrobianos/química , Proteínas da Membrana Bacteriana Externa/genética , Proteínas de Bactérias/efeitos dos fármacos , Proteínas de Bactérias/genética , Linhagem Celular , Membrana Celular/efeitos dos fármacos , Membrana Celular/metabolismo , Permeabilidade da Membrana Celular/efeitos dos fármacos , Regulação para Baixo/efeitos dos fármacos , Humanos , Macrófagos/efeitos dos fármacos , Camundongos , Testes de Sensibilidade Microbiana , Porinas/efeitos dos fármacos , Porinas/genética , Pseudomonas aeruginosa/metabolismo
2.
J Nanobiotechnology ; 14: 13, 2016 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-26921130

RESUMO

BACKGROUND: Respiratory syncytial virus (RSV) causes severe respiratory infection in infants, children and elderly. Currently, there is no effective vaccine or RSV specific drug for the treatment. However, an antiviral drug ribavirin and palivizumab is prescribed along with symptomatic treatment. RSV detection is important to ensure appropriate treatment of children. Most commonly used detection methods for RSV are DFA, ELISA and Real-time PCR which are expensive and time consuming. Newer approach of plasmonic detection techniques like localized surface plasmon resonance (LSPR) spectroscopy using metallic nanomaterials has gained interest recently. The LSPR spectroscopy is simple and easy than the current biophysical detection techniques like surface-enhanced Raman scattering (SERS) and mass-spectroscopy. RESULTS: In this study, we utilized LSPR shifting as an RSV detection method by using an anti-RSV polyclonal antibody conjugated to metallic nanoparticles (Cu, Ag and Au). Nanoparticles were synthesized using alginate as a reducing and stabilizing agent. RSV dose and time dependent LSPR shifting was measured for all three metallic nanoparticles (non-functionalized and functionalized). Specificity of the functionalized nanoparticles for RSV was evaluated in the presence Pseudomonas aeruginosa and adenovirus. We found that functionalized copper nanoparticles were efficient in RSV detection. Functionalized copper and silver nanoparticles were specific for RSV, when tested in the presence of adenovirus and P. aeruginosa, respectively. Limit of detection and limit of quantification values reveal that functionalized copper nanoparticles are superior in comparison with silver and gold nanoparticles. CONCLUSIONS: The study demonstrates successful application of LSPR for RSV detection, and it provides an easy and inexpensive alternative method for the potential development of LSPR-based detection devices.


Assuntos
Nanopartículas Metálicas/química , Vírus Sinciciais Respiratórios/química , Prata/química , Adenoviridae/efeitos dos fármacos , Anticorpos Antivirais/química , Anticorpos Antivirais/imunologia , Antivirais/farmacologia , Cobre/química , Ouro/química , Palivizumab/farmacologia , Pseudomonas aeruginosa/efeitos dos fármacos , Vírus Sinciciais Respiratórios/efeitos dos fármacos , Sensibilidade e Especificidade , Ressonância de Plasmônio de Superfície/métodos
3.
Nanomedicine ; 12(8): 2299-2310, 2016 11.
Artigo em Inglês | MEDLINE | ID: mdl-27381068

RESUMO

Respiratory syncytial virus (RSV) causes severe pneumonia and bronchiolitis in infants, children and older adults. The use of metallic nanoparticles as potential therapeutics is being explored against respiratory viruses like Influenza, Parainfluenza and Adenovirus. In this study, we showed that gold nanorods (GNRs) inhibit RSV in HEp-2 cells and BALB/c mice by 82% and 56%, respectively. The RSV inhibition correlated with marked upregulated antiviral genes due to GNR mediated TLR, NOD-like receptor and RIG-I-like receptor signaling pathways. Transmission electron microscopy of lungs showed GNRs in the endocytotic vesicles and histological analyses indicated infiltration by neutrophils, eosinophils and monocytes correlating with clearance of RSV. In addition, production of cytokines and chemokines in the lungs indicates recruitment of immune cells to counter RSV replication. To our knowledge, this is the first in vitro and in vivo report that provides possible antiviral mechanisms of GNRs against RSV.


Assuntos
Ouro/farmacologia , Imunidade Inata , Nanotubos , Infecções por Vírus Respiratório Sincicial/tratamento farmacológico , Vírus Sinciciais Respiratórios/efeitos dos fármacos , Animais , Ouro/administração & dosagem , Humanos , Camundongos , Camundongos Endogâmicos NOD
4.
Indian J Microbiol ; 52(3): 489-91, 2012 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-23997344

RESUMO

Unigene sequence in public database provides a cost-effective and valuable source, for the development of microsatellite markers also known as unigene-derived microsatellite (UGMS) markers. In our study, genetic variation among 24 Phytophthora nicotianae isolates from five major citrus growing states of India were analysed through UGMS markers. Morphological and clustering results indicated variation among these Phytophthora nicotianae were independent of its geographical confinement and showed 62.27% polymorphism. The study also validated the potential use of UGMS markers.

5.
Sci Adv ; 8(8): eabm7950, 2022 Feb 25.
Artigo em Inglês | MEDLINE | ID: mdl-35196075

RESUMO

Simultaneous delivery of mRNA to multiple populations of antigen (Ag)-specific CD8+ T cells is challenging given the diversity of peptide epitopes and polymorphism of class I major histocompatibility complexes (MHCI). We developed Ag-presenting nanoparticles (APNs) for mRNA delivery using pMHCI molecules that were refolded with photocleavable peptides to allow rapid ligand exchange by UV light and site-specifically conjugated with a lipid tail for postinsertion into preformed mRNA lipid nanoparticles. Across different TCR transgenic mouse models (P14, OT-1, and Pmel), UV-exchanged APNs bound and transfected their cognate Ag-specific CD8+ T cells equivalent to APNs produced using conventionally refolded pMHCI molecules. In mice infected with PR8 influenza, multiplexed delivery of UV-exchanged APNs against three immunodominant epitopes led to ~50% transfection of a VHH mRNA reporter in cognate Ag-specific CD8+ T cells. Our data show that UV-mediated peptide exchange can be used to rapidly produce APNs for mRNA delivery to multiple populations of Ag-specific T cells in vivo.

6.
ACS Nano ; 16(4): 5660-5671, 2022 04 26.
Artigo em Inglês | MEDLINE | ID: mdl-35357116

RESUMO

Programmable control of gene expression via nuclease-null Cas9 fusion proteins has enabled the engineering of cellular behaviors. Here, both transcriptional and epigenetic gene activation via synthetic mRNA and lipid nanoparticle delivery was demonstrated in vivo. These highly efficient delivery strategies resulted in high levels of activation in multiple tissues. Finally, we demonstrate durable gene activation in vivo via transient delivery of a single dose of a gene activator that combines VP64, p65, and HSF1 with a SWI/SNF chromatin remodeling complex component SS18, representing an important step toward gene-activation-based therapeutics. This induced sustained gene activation could be inhibited via mRNA-encoded AcrIIA4, further improving the safety profile of this approach.


Assuntos
Sistemas CRISPR-Cas , Lipossomos , Ativação Transcricional , RNA Mensageiro/genética , Proteína 9 Associada à CRISPR/genética
7.
Nat Biotechnol ; 39(6): 717-726, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33536629

RESUMO

Cas13a has been used to target RNA viruses in cell culture, but efficacy has not been demonstrated in animal models. In this study, we used messenger RNA (mRNA)-encoded Cas13a for mitigating influenza virus A and severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection in mice and hamsters, respectively. We designed CRISPR RNAs (crRNAs) specific for PB1 and highly conserved regions of PB2 of influenza virus, and against the replicase and nucleocapsid genes of SARS-CoV-2, and selected the crRNAs that reduced viral RNA levels most efficiently in cell culture. We delivered polymer-formulated Cas13a mRNA and the validated guides to the respiratory tract using a nebulizer. In mice, Cas13a degraded influenza RNA in lung tissue efficiently when delivered after infection, whereas in hamsters, Cas13a delivery reduced SARS-CoV-2 replication and reduced symptoms. Our findings suggest that Cas13a-mediated targeting of pathogenic viruses can mitigate respiratory infections.


Assuntos
COVID-19/terapia , Influenza Humana/terapia , RNA Mensageiro/farmacologia , SARS-CoV-2/genética , Animais , COVID-19/genética , COVID-19/virologia , Sistemas CRISPR-Cas/genética , Cricetinae , Modelos Animais de Doenças , Humanos , Influenza Humana/genética , Influenza Humana/virologia , Camundongos , Orthomyxoviridae/efeitos dos fármacos , Orthomyxoviridae/genética , Orthomyxoviridae/patogenicidade , RNA Mensageiro/genética , RNA Viral/genética , Sistema Respiratório/efeitos dos fármacos , Sistema Respiratório/metabolismo , SARS-CoV-2/patogenicidade
8.
Viruses ; 11(8)2019 08 11.
Artigo em Inglês | MEDLINE | ID: mdl-31405261

RESUMO

Treatment drugs, besides their specific activity, often have multiple effects on the body. The undesired effect of the drug may be repurposed as therapeutics, saving significant investigative time and effort. Minocycline has anti-cancer, anti-oxidant, anti-inflammatory, and anti-apoptotic properties. Presently, minocycline is also known to show anti-viral activity against Influenza virus, Japanese encephalitis virus, Simian immunodeficiency virus, Human immunodeficiency virus and West Nile virus. Here, we investigate the effect of minocycline on Respiratory syncytial virus (RSV), a common respiratory virus that causes severe mortality and morbidity in infants, children, and older adult populations. Currently, there is no effective vaccine or treatment for RSV infection; hence, there is a critical need for alternative and effective drug choices. Our study shows that minocycline reduces the RSV-mediated cytopathic effect and prevents RSV infection. This is the first study demonstrating the anti-viral activity of minocycline against RSV.


Assuntos
Antibacterianos/uso terapêutico , Antibioticoprofilaxia , Minociclina/uso terapêutico , Infecções por Vírus Respiratório Sincicial/prevenção & controle , Vírus Sincicial Respiratório Humano/efeitos dos fármacos , Antibacterianos/farmacologia , Linhagem Celular , Sobrevivência Celular/efeitos dos fármacos , Citocinas/metabolismo , Humanos , Minociclina/farmacologia , Infecções por Vírus Respiratório Sincicial/virologia
9.
Expert Opin Drug Deliv ; 16(9): 969-980, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31382795

RESUMO

Introduction: Human respiratory syncytial virus (RSV) is a common respiratory virus that causes severe lower respiratory tract infection in infants, children and aged adults. Currently, there is no active prophylaxis present in the market for RSV infection; however, there are over a dozen compounds being tested in the laboratory as well as clinical trials. To increase the efficiency and safety of these therapeutics, there is a need for delivery vehicles. Areas covered: Liposomes can be used for delivering anti-RSV agents with the advantage of modulating and eliciting the desired adjuvant effect by the different combination of lipids. This review discusses the promising application of liposome for anti-RSV therapeutics. Expert opinion: Liposomes are attracting attention for delivery of pulmonary therapeutics, since they offer compatibility for delivering drugs, vaccines and other therapeutic molecules. Variation in liposome size and composition gives flexibility for the amount and number of deliverables, whilst targeted delivery with the capability for immunomodulation makes liposomes a promising candidate for RSV therapeutic applications.


Assuntos
Antivirais/administração & dosagem , Infecções por Vírus Respiratório Sincicial/tratamento farmacológico , Vacinas contra Vírus Sincicial Respiratório/administração & dosagem , Animais , Humanos , Lipossomos
10.
Nat Commun ; 9(1): 3999, 2018 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-30275522

RESUMO

The lung is a critical prophylaxis target for clinically important infectious agents, including human respiratory syncytial virus (RSV) and influenza. Here, we develop a modular, synthetic mRNA-based approach to express neutralizing antibodies directly in the lung via aerosol, to prevent RSV infections. First, we express palivizumab, which reduces RSV F copies by 90.8%. Second, we express engineered, membrane-anchored palivizumab, which prevents detectable infection in transfected cells, reducing in vitro titer and in vivo RSV F copies by 99.7% and 89.6%, respectively. Finally, we express an anchored or secreted high-affinity, anti-RSV F, camelid antibody (RSV aVHH and sVHH). We demonstrate that RSV aVHH, but not RSV sVHH, significantly inhibits RSV 7 days post transfection, and we show that RSV aVHH is present in the lung for at least 28 days. Overall, our data suggests that expressing membrane-anchored broadly neutralizing antibodies in the lungs could potentially be a promising pulmonary prophylaxis approach.


Assuntos
Anticorpos Neutralizantes/imunologia , Antivirais/administração & dosagem , Palivizumab/imunologia , RNA Mensageiro/administração & dosagem , Infecções por Vírus Respiratório Sincicial/prevenção & controle , Vírus Sincicial Respiratório Humano/imunologia , Animais , Anticorpos Neutralizantes/genética , Anticorpos Neutralizantes/metabolismo , Antivirais/imunologia , Linhagem Celular , Membrana Celular/metabolismo , Feminino , Humanos , Pulmão/metabolismo , Camundongos , Camundongos Endogâmicos BALB C , Palivizumab/genética , Palivizumab/metabolismo , Profilaxia Pré-Exposição , RNA Mensageiro/genética , RNA Mensageiro/imunologia , Infecções por Vírus Respiratório Sincicial/imunologia , Infecções por Vírus Respiratório Sincicial/virologia , Proteínas Virais de Fusão/imunologia
11.
Adv Virol ; 2016: 7971847, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27688769

RESUMO

Respiratory syncytial virus (RSV) causes severe acute lower respiratory tract disease leading to numerous hospitalizations and deaths among the infant and elderly populations worldwide. There is no vaccine or a less effective drug available against RSV infections. Natural RSV infection stimulates the Th1 immune response and activates the production of neutralizing antibodies, while earlier vaccine trials that used UV-inactivated RSV exacerbated the disease due to the activation of the allergic Th2 response. With a focus on Th1 immunity, we developed a DNA vaccine containing the native RSV fusion (RSV F) protein and studied its immune response in BALB/c mice. High levels of RSV specific antibodies were induced during subsequent immunizations. The serum antibodies were able to neutralize RSV in vitro. The RSV inhibition by sera was also shown by immunofluorescence analyses. Antibody response of the RSV F DNA vaccine showed a strong Th1 response. Also, sera from RSV F immunized and RSV infected mice reduced the RSV infection by 50% and 80%, respectively. Our data evidently showed that the RSV F DNA vaccine activated the Th1 biased immune response and led to the production of neutralizing antibodies, which is the desired immune response required for protection from RSV infections.

12.
Biomaterials ; 35(35): 9484-94, 2014 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-25154664

RESUMO

Reduced toxicity and ease of modification make gold nanoparticles (GNPs) suitable for targeted delivery, bioimaging and theranostics by conjugating cell-penetrating peptides (CPPs). This study presents the biodistribution and enhanced intracellular uptake of GNPs functionalized with VG-21, a CPP derived from vesicular stomatitis virus glycoprotein (G). Cell penetrating efficiency of VG-21 was demonstrated using CellPPD web server, conjugated to GNPs and were characterized using, UV-visible and FTIR spectroscopy, transmission electron microscopy, dynamic light scattering and zeta potential. Uptake of VG-21 functionalized GNPs (fGNPs) was tested in eukaryotic cell lines, HEp-2, HeLa, Vero and Cos-7, using flow cytometry, fluorescence and transmission electron microscopy (TEM), and inductively coupled plasmon optical emission spectroscopy (ICP-OES). The effects of nanoparticles on stress and toxicity related genes were studied in HEp-2 cells. Cytokine response to fGNPs was studied in vitro and in vivo. Biodistribution of nanoparticles was studied in BALB/c mice using TEM and ICP-OES. VG-21, GNPs and fGNPs had little to no effect on cell viability. Upon exposure to fGNPs, HEp-2 cells revealed minimal down regulation of stress response genes. fGNPs displayed higher uptake than GNPs in all cell lines with highest internalization by HEp-2, HeLa and Cos-7 cells, in endocytotic vesicles and nuclei. Cytokine ELISA showed that mouse J774 cells exposed to fGNPs produced less IL-6 than did GNP-treated macrophage cells, whereas TNF-α levels were low in both treatment groups. Biodistribution studies in BALB/c mice revealed higher accumulation of fGNPs than GNPs in the liver and spleen. Histopathological analyses showed that fGNP-treated mice accumulated 35 ng/mg tissue and 20 ng/mg tissue gold in spleen and liver respectively, without any adverse effects. Likewise, serum cytokines were low in both GNP- and fGNP-treated mice. Thus, VG-21-conjugated GNPs have enhanced cellular internalization and are suitable for various biomedical applications as nano-conjugates.


Assuntos
Peptídeos Penetradores de Células/farmacocinética , Ouro/farmacocinética , Nanopartículas Metálicas/química , Animais , Células COS , Sobrevivência Celular/efeitos dos fármacos , Chlorocebus aethiops , Feminino , Ouro/química , Células HeLa , Humanos , Interleucina-6/metabolismo , Glicoproteínas de Membrana/farmacocinética , Camundongos , Camundongos Endogâmicos BALB C , Microscopia Eletrônica de Transmissão , Distribuição Tecidual , Fator de Necrose Tumoral alfa/metabolismo , Células Vero , Vesiculovirus/metabolismo , Proteínas do Envelope Viral/farmacocinética
13.
Adv Virol ; 2013: 595768, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24382964

RESUMO

Human respiratory syncytial virus (RSV) is a common cause of respiratory infection in infants and the elderly, leading to significant morbidity and mortality. The interdisciplinary fields, especially biotechnology and nanotechnology, have facilitated the development of modern detection systems for RSV. Many anti-RSV compounds like fusion inhibitors and RNAi molecules have been successful in laboratory and clinical trials. But, currently, there are no effective drugs for RSV infection even after decades of research. Effective diagnosis can result in effective treatment, but the progress in both of these facets must be concurrent. The development in prevention and treatment measures for RSV is at appreciable pace, but the implementation into clinical practice still seems a challenge. This review attempts to present the promising diverse research approaches and advancements in the area of diagnosis, prevention, and treatment that contribute to RSV management.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA