RESUMO
We analyse the electrical and optical properties of single GaN nanowire p-n junctions grown by plasma-assisted molecular-beam epitaxy using magnesium and silicon as doping sources. Different junction architectures having either a n-base or a p-base structure are compared using optical and electrical analyses. Electron-beam induced current (EBIC) microscopy of the nanowires shows that in the case of a n-base p-n junction the parasitic radial growth enhanced by the magnesium (Mg) doping leads to a mixed axial-radial behaviour with strong wire-to-wire fluctuations of the junction position and shape. By reverting the doping order p-base p-n junctions with a purely axial well-defined structure and a low wire-to-wire dispersion are achieved. The good optical quality of the top n nanowire segment grown on a p-doped stem is preserved. A hole concentration in the p-doped segment exceeding 1018 cm-3 was extracted from EBIC mapping and photoluminescence analyses. This high concentration is reached without degrading the nanowire morphology.
RESUMO
Axial p-n and p-i-n junctions in GaAs0.7P0.3 nanowires are demonstrated and analyzed using electron beam induced current microscopy. Organized self-catalyzed nanowire arrays are grown by molecular beam epitaxy on nanopatterned Si substrates. The nanowires are doped using Be and Si impurities to obtain p- and n-type conductivity, respectively. A method to determine the doping type by analyzing the induced current in the vicinity of a Schottky contact is proposed. It is demonstrated that for the applied growth conditions using Ga as a catalyst, Si doping induces an n-type conductivity contrary to the GaAs self-catalyzed nanowire case, where Si was reported to yield a p-type doping. Active axial nanowire p-n junctions having a homogeneous composition along the axis are synthesized and the carrier concentration and minority carrier diffusion lengths are measured. To the best of our knowledge, this is the first report of axial p-n junctions in self-catalyzed GaAsP nanowires.
RESUMO
In this work, nanoscale electrical and optical properties of n-GaN nanowires (NWs) containing GaN/AlN multiple quantum discs (MQDs) grown by molecular beam epitaxy are investigated by means of single wire I(V) measurements, electron beam induced current microscopy (EBIC) and cathodoluminescence (CL) analysis. A strong impact of non-intentional AlN and GaN shells on the electrical resistance of individual NWs is put in evidence. The EBIC mappings reveal the presence of two regions with internal electric fields oriented in opposite directions: one in the MQDs region and the other in the adjacent bottom GaN segment. These fields are found to co-exist under zero bias, while under an external bias either one or the other dominates the current collection. In this way EBIC maps allow us to locate the current generation within the wire under different bias conditions and to give the first direct evidence of carrier collection from AlN/GaN MQDs. The NWs have been further investigated by photoluminescence and CL analyses at low temperature. CL mappings show that the near band edge emission of GaN from the bottom part of the NW is blue-shifted due to the presence of the radial shell. In addition, it is observed that CL intensity drops in the central part of the NWs. Comparing the CL and EBIC maps, this decrease of the luminescence intensity is attributed to an efficient charge splitting effect due to the electric fields in the MQDs region and in the GaN base.
RESUMO
Collection of free carriers is a key issue in silicon photonics devices. We show that a lateral metal-semiconductor-metal Schottky junction is an efficient and simple way of dealing with that issue in a photonic crystal microcavity. Using a simple electrode design, and taking into account the optical mode profile, the resulting carrier distribution in the structure is calculated. We show that the corresponding effective free carrier lifetime can be reduced by 50 times when the bias is tuned. This allows one to maintain a high cavity quality factor under strong optical injection. In the fabricated structures, carrier depletion is correlated with transmission spectra and directly visualized by Electron Beam Induced Current pictures. These measurements demonstrate the validity of this carrier extraction principle. The design can still be optimized in order to obtain full carrier depletion at a smaller energy cost.
Assuntos
Semicondutores , Silício/química , Ressonância de Plasmônio de Superfície/instrumentação , Desenho de Equipamento , Análise de Falha de Equipamento , Miniaturização , FótonsRESUMO
Recent evidence suggests that proinflammatory cytokines, such as tumor necrosis factor α (TNF-α), play a pivotal role in the development of inflammatory-related pathologies (covid-19, depressive disorders, sepsis, cancer, etc.,). More importantly, the development of TNF-α biosensors applied to biological fluids (e.g. sweat) could offer non-invasive solutions for the continuous monitoring of these disorders, in particular, polydimethylsiloxane (PDMS)-based biosensors. We have therefore investigated the biofunctionalization of PDMS surfaces using a silanization reaction with 3-aminopropyltriethoxysilane, for the development of a human TNF-α biosensor. The silanization conditions for 50 µm PDMS surfaces were extensively studied by using water contact angle measurements, electron dispersive X-ray and Fourier transform infrared spectroscopies, and fluorescamine detection. Evaluation of the wettability of the silanized surfaces and the Si/C ratio pointed out to the optimal silanization conditions supporting the formation of a stable and reproducible aminosilane layer, necessary for further bioconjugation. An ELISA-type immunoassay was then successfully performed for the detection and quantification of human TNF-α through fluorescent microscopy, reaching a limit of detection of 0.55 µg/mL (31.6 nM). Finally, this study reports for the first time a promising method for the development of PDMS-based biosensors for the detection of TNF-α, using a quick, stable, and simple biofunctionalization process.
Assuntos
Dimetilpolisiloxanos/química , Imunoensaio/métodos , Fator de Necrose Tumoral alfa/análise , Anticorpos Imobilizados/química , Anticorpos Imobilizados/imunologia , COVID-19/metabolismo , COVID-19/patologia , COVID-19/virologia , Carbono/química , Humanos , Imunoensaio/instrumentação , Limite de Detecção , Microfluídica , Microscopia de Fluorescência , SARS-CoV-2/isolamento & purificação , Silício/química , Fator de Necrose Tumoral alfa/imunologia , MolhabilidadeRESUMO
Zinc oxide (ZnO) is a II-VI group semiconductor with a wide direct bandgap and is an important material for various fields of industry and high-technological applications. The effects of thickness, annealing process in N2 and air, optical properties, and morphology of ZnO thin-films are studied. A low-cost sol-gel spin-coating technique is used in this study for the simple synthesis of eco-friendly ZnO multilayer films deposited on (100)-oriented silicon substrates ranging from 150 to 600 nm by adjusting the spin coating rate. The ZnO sol-gel thin-films using precursor solutions of molarity 0.75 M exhibit an average optical transparency above 98%, with an optical band gap energy of 3.42 eV. The c-axis (002) orientation of the ZnO thin-films annealed at 400 °C were mainly influenced by the thickness of the multilayer, which is of interest for piezoelectric applications. These results demonstrate that a low-temperature method can be used to produce an eco-friendly, cost-effective ZnO sol-gel that is compatible with a complementary metal-oxide-semiconductor (CMOS) and integrated-circuits (IC).
RESUMO
One obstacle for the development of nanowire (NW) solar cells is the challenge to assess and control their nanoscale electrical properties. In this work a top-cell made of p-n GaAs core/shell NWs grown on a Si(111) substrate by Molecular Beam Epitaxy (MBE) is investigated by high resolution charge collection microscopy. Electron Beam Induced Current (EBIC) analyses of single NWs have validated the formation of a homogeneous radial p-n junction over the entire length of the NWs. The radial geometry leads to an increase of the junction area by 38 times with respect to the NW footprint. The interface between the NWs and the Si(111) substrate does not show any electrical loss, which would have led to a decrease of the EBIC signal. Single NW I-V characteristics present a diodic behavior. A model of the radial junction single NW is proposed and the electrical parameters are estimated by numerical fitting of the I-Vs and of the EBIC map. Solar cells based on NW arrays were fabricated and analyzed by EBIC microscopy, which evidenced the presence of a Schottky barrier at the NW/ITO top contact. Improvement of the top contact quality is achieved by thermal annealing at 400 °C, which strongly reduces the parasitic Schottky barrier.
RESUMO
The driving mechanism of a scanning mirror can cause significant impairment of expanded beam properties, which we investigated for several scanning waveforms. Engineering on the scanning waveform is then carried out by a scanned CO2 laser beam technique to enlarge the uniform heating region for stretching and sintering of silica fibers. Details of the derivation are given. A simple thermal model is presented to account for the relationship between the scanning beam profile and the taper shape. Fusion profiles are also compared for various scanning waveforms. The corresponding scanned beam power distributions are determined experimentally, which enables us to determine precise power density conditions for CO2 laser fusion.