Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Opt Lett ; 42(7): 1277-1280, 2017 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-28362748

RESUMO

We demonstrate an easy-to-manufacture 25-mm-long ultra-stable optical reference cavity for transportable photonic microwave generation systems. Employing a rigid holding geometry that is first-order insensitive to the squeezing force and a cavity geometry that improves the thermal noise limit at room temperature, we observe a laser phase noise that is nearly thermal noise limited for three frequency decades (1 Hz to 1 kHz offset) and supports 10 GHz generation with phase noise near -100 dBc/Hz at 1 Hz offset and <-173 dBc/Hz for all offsets >600 Hz. The fractional frequency stability reaches 2×10-15 at 0.1 s of averaging.

2.
Phys Rev Lett ; 118(22): 221102, 2017 Jun 02.
Artigo em Inglês | MEDLINE | ID: mdl-28621983

RESUMO

Phase compensated optical fiber links enable high accuracy atomic clocks separated by thousands of kilometers to be compared with unprecedented statistical resolution. By searching for a daily variation of the frequency difference between four strontium optical lattice clocks in different locations throughout Europe connected by such links, we improve upon previous tests of time dilation predicted by special relativity. We obtain a constraint on the Robertson-Mansouri-Sexl parameter |α|≲1.1×10^{-8}, quantifying a violation of time dilation, thus improving by a factor of around 2 the best known constraint obtained with Ives-Stilwell type experiments, and by 2 orders of magnitude the best constraint obtained by comparing atomic clocks. This work is the first of a new generation of tests of fundamental physics using optical clocks and fiber links. As clocks improve, and as fiber links are routinely operated, we expect that the tests initiated in this Letter will improve by orders of magnitude in the near future.

3.
Opt Lett ; 38(12): 2122-4, 2013 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-23938997

RESUMO

We demonstrate an optical frequency standard based on rubidium vapor loaded within a hollow-core photonic crystal fiber. We use the 5S(1/2)→5D(5/2) two-photon transition, excited with two lasers at 780 and 776 nm. The sum-frequency of these lasers is stabilized to this transition using modulation transfer spectroscopy, demonstrating a fractional frequency stability of 9.8×10(-12) at 1 s. The current performance limitations are presented, along with a path to improving the performance by an order of magnitude. This technique will deliver a compact, robust standard with potential applications in commercial and industrial environments.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA