Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 42
Filtrar
1.
PLoS Genet ; 18(12): e1010502, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36508464

RESUMO

Fungal growth and development are coordinated with specific secondary metabolism. This coordination requires 8 of 74 F-box proteins of the filamentous fungus Aspergillus nidulans. F-box proteins recognize primed substrates for ubiquitination by Skp1-Cul1-Fbx (SCF) E3 ubiquitin RING ligases and degradation by the 26S proteasome. 24 F-box proteins are found in the nuclear fraction as part of SCFs during vegetative growth. 43 F-box proteins interact with SCF proteins during growth, development or stress. 45 F-box proteins are associated with more than 700 proteins that have mainly regulatory roles. This corroborates that accurate surveillance of protein stability is prerequisite for organizing multicellular fungal development. Fbx23 combines subcellular location and protein stability control, illustrating the complexity of F-box mediated regulation during fungal development. Fbx23 interacts with epigenetic methyltransferase VipC which interacts with fungal NF-κB-like velvet domain regulator VeA that coordinates fungal development with secondary metabolism. Fbx23 prevents nuclear accumulation of methyltransferase VipC during early development. These results suggest that in addition to their role in protein degradation, F-box proteins also control subcellular accumulations of key regulatory proteins for fungal development.


Assuntos
Aspergillus nidulans , Proteínas F-Box , Aspergillus nidulans/genética , Aspergillus nidulans/metabolismo , Proteínas F-Box/genética , Proteínas F-Box/metabolismo , Ubiquitina-Proteína Ligases/genética , Ubiquitinação/genética , Metiltransferases/metabolismo , Proteínas Ligases SKP Culina F-Box/genética , Proteínas Ligases SKP Culina F-Box/metabolismo
2.
Nucleic Acids Res ; 50(17): 9797-9813, 2022 09 23.
Artigo em Inglês | MEDLINE | ID: mdl-36095118

RESUMO

Chromatin complexes control a vast number of epigenetic developmental processes. Filamentous fungi present an important clade of microbes with poor understanding of underlying epigenetic mechanisms. Here, we describe a chromatin binding complex in the fungus Aspergillus nidulans composing of a H3K4 histone demethylase KdmB, a cohesin acetyltransferase (EcoA), a histone deacetylase (RpdA) and a histone reader/E3 ligase protein (SntB). In vitro and in vivo evidence demonstrate that this KERS complex is assembled from the EcoA-KdmB and SntB-RpdA heterodimers. KdmB and SntB play opposing roles in regulating the cellular levels and stability of EcoA, as KdmB prevents SntB-mediated degradation of EcoA. The KERS complex is recruited to transcription initiation start sites at active core promoters exerting promoter-specific transcriptional effects. Interestingly, deletion of any one of the KERS subunits results in a common negative effect on morphogenesis and production of secondary metabolites, molecules important for niche securement in filamentous fungi. Consequently, the entire mycotoxin sterigmatocystin gene cluster is downregulated and asexual development is reduced in the four KERS mutants. The elucidation of the recruitment of epigenetic regulators to chromatin via the KERS complex provides the first mechanistic, chromatin-based understanding of how development is connected with small molecule synthesis in fungi.


Assuntos
Aspergillus nidulans , Cromatina , Acetiltransferases/metabolismo , Aspergillus nidulans/genética , Aspergillus nidulans/metabolismo , Cromatina/genética , Cromatina/metabolismo , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Regulação Fúngica da Expressão Gênica , Genes Fúngicos , Genes Reguladores , Histona Desacetilases/metabolismo , Histona Desmetilases/metabolismo , Histonas/genética , Histonas/metabolismo , Esterigmatocistina/metabolismo , Ubiquitina-Proteína Ligases/metabolismo
3.
Cardiol Young ; 34(2): 380-386, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37449314

RESUMO

OBJECTIVE: The aim of this study is to investigate the frequency of fragmented QRS and its associations with clinical findings and prognosis in children diagnosed with dilated cardiomyopathy with or without left ventricular non-compaction. METHODS: This retrospective study was conducted between 2010 and 2020. Patients with dilated cardiomyopathy were classified into two groups according to the presence of left ventricular non-compaction: Dilated cardiomyopathy with left ventricular non-compaction and dilated cardiomyopathy without left ventricular non-compaction. Patients were also divided into two groups according to the presence of fragmented QRS (fragmented QRS group and non-fragmented QRS group). RESULTS: Twenty-three of 44 patients (52.3%) were male. Among left ventricular non-compaction patients, the fragmented QRS group had more complex ventricular arrhythmias (p = 0.003). Patients with fragmented QRS had a significantly higher rate of major adverse cardiac events and/or cardiac death in both cardiomyopathy groups (p = 0.003 and p = 0.005). However, the rate of major adverse cardiac events and/or cardiac death was similar between dilated cardiomyopathy patients with and without left ventricular non-compaction. Multivariate logistic regression analysis showed that the presence of fragmented QRS strongly predicts major adverse cardiac events and/or cardiac death (odds ratio, 31.186; 95% confidence interval, 2.347-414.307). Although the survival rates between cardiomyopathy groups were similar, patients with fragmented QRS had a markedly lower survival rate during the follow-up period, as mean of 15 months (p = 0.001). CONCLUSION: Our study showed that the presence of fragmented QRS may be an important ECG sign predicting an major adverse cardiac event and/or cardiac death in patients with dilated cardiomyopathy. We believe that recognising fragmented QRS could be valuable in forecasting patient prognosis and identifying high-risk patients who require additional support.


Assuntos
Cardiomiopatia Dilatada , Criança , Humanos , Masculino , Feminino , Cardiomiopatia Dilatada/complicações , Cardiomiopatia Dilatada/diagnóstico , Estudos Retrospectivos , Eletrocardiografia , Arritmias Cardíacas/etiologia , Arritmias Cardíacas/complicações , Prognóstico , Morte
4.
Cardiol Young ; 34(2): 291-300, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37381829

RESUMO

OBJECTIVE: This study aimed to evaluate the cardiovascular manifestations and surveillance of multisystem inflammatory syndrome in children (MIS-C) and to determine the correlation of echocardiographic findings with cardiac magnetic resonance imaging findings. METHODS: Forty-four children diagnosed as MIS-C with cardiac involvement were enrolled in this observational descriptive study. The diagnosis of MIS-C was made according to the criteria of Centers for Disease Control and Prevention. Clinical findings, laboratory parameters, and electrocardiographic and echocardiographic findings at the time of diagnosis and during follow-up were evaluated. Cardiac magnetic resonance was performed on 28 (64%) cases. The 1-year follow-up imaging was performed in all cases with abnormal initial cardiac magnetic resonance findings. RESULTS: Forty-four patients (56.8% male) with a mean age of 8.5 ± 4.8 years were enrolled in this study. There was a significant positive correlation between high-sensitivity cardiac troponin T (mean: 162 ± 444.4 pg/ml) and N-terminal pro b-type natriuretic peptide (mean: 10,054 ± 11,604 pg/ml) (p < 0.01). Number of cases with an electrocardiographic and echocardiographic abnormality was 34 (77%) and 31 (70%), respectively. Twelve cases (45%) had left ventricular systolic dysfunction and 14 (32%) cases had pericardial effusion on admission. Three cases (11%) had cardiac magnetic resonance findings that may be attributed to the presence of myocardial inflammation, and pericardial effusion was present in seven (25%) cases. Follow-up cardiac magnetic resonances of all cases were normal. Cardiac abnormalities were completely resolved in all except two cases. CONCLUSIONS: Myocardial involvement can be seen during acute disease, but MIS-C generally does not lead to prominent damage during a year of surveillance. Cardiac magnetic resonance is a valuable tool to evaluate the degree of myocardial involvement in cases with MIS-C.


Assuntos
COVID-19/complicações , Derrame Pericárdico , Síndrome de Resposta Inflamatória Sistêmica , Criança , Humanos , Masculino , Pré-Escolar , Adolescente , Feminino , Seguimentos , Imageamento por Ressonância Magnética , Espectroscopia de Ressonância Magnética
5.
Fungal Genet Biol ; 166: 103795, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-37023941

RESUMO

Gliotoxin (GT) biosynthesis in fungi is encoded by the gli biosynthetic gene cluster. While GT addition autoinduces biosynthesis, Zn2+ has been shown to attenuate cluster activity, and it was speculated that identification of Zn2Cys6 binuclear transcription factor GliZ binding partners might provide insight into this observation. Using the Tet-ON induction system, doxycycline (DOX) presence induced GliZ fusion protein expression in, and recovery of GT biosynthesis by, A. fumigatus ΔgliZ::HA-gliZ and ΔgliZ::TAP-gliZ strains, respectively. Quantitative RT-PCR confirmed that DOX induces gli cluster gene expression (n = 5) in both A. fumigatus HA-GliZ and TAP-GliZ strains. GT biosynthesis was evident in Czapek-Dox and in Sabouraud media, however tagged GliZ protein expression was more readily detected in Sabouraud media. Unexpectedly, Zn2+ was essential for GliZ fusion protein expression in vivo, following 3 h DOX induction. Moreover, HA-GliZ abundance was significantly higher in either DOX/GT or DOX/Zn2+, compared to DOX-only. This suggests that while GT induction is still intact, Zn2+ inhibition of HA-GliZ production in vivo is lost. Co-immunoprecipitation revealed that GT oxidoreductase GliT associates with GliZ in the presence of GT, suggesting a potential protective role. Additional putative HA-GliZ interacting proteins included cystathionine gamma lyase, ribosomal protein L15 and serine hydroxymethyltransferase (SHMT). Total mycelial quantitative proteomic data revealed that GliT and GtmA, as well as several other gli cluster proteins, are increased in abundance or uniquely expressed with GT addition. Proteins involved in sulphur metabolism are also differentially expressed with GT or Zn2+ presence. Overall, we disclose that under DOX induction GliZ functionality is unexpectedly evident in zinc-replete media, subject to GT induction and that GliT appears to associate with GliZ, potentially to prevent dithiol gliotoxin (DTG)-mediated GliZ inactivation by zinc ejection.


Assuntos
Aspergillus fumigatus , Gliotoxina , Aspergillus fumigatus/genética , Aspergillus fumigatus/metabolismo , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Proteômica , Zinco/metabolismo
6.
Fungal Genet Biol ; 169: 103836, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37666447

RESUMO

The filamentous fungus Aspergillus flavus is a plant and human pathogen predominantly found in the soil as spores or sclerotia and is capable of producing various secondary metabolites (SM) such as the carcinogenic mycotoxin aflatoxin. Recently, we have discovered a novel nuclear chromatin binding complex (KERS) that contains the JARID1-type histone demethylase KdmB, a putative cohesion acetyl transferase EcoA, a class I type histone deacetylase RpdA and the PHD ring finger reader protein SntB in the model filamentous fungus Aspergillus nidulans. Here, we show the presence of the KERS complex in A. flavus by immunoprecipitation-coupled mass spectrometry and constructed kdmBΔ and rpdAΔ strains to study their roles in fungal development, SM production and histone post-translational modifications (HPTMs). We found that KdmB and RpdA couple the regulation of SM gene clusters with fungal light-responses and HPTMs. KdmB and RpdA have opposing roles in light-induced asexual conidiation, while both factors are positive regulators of sclerotia development through the nsdC and nsdD pathway. KdmB and RpdA are essential for the productions of aflatoxin (similar to findings for SntB) as well as cyclopiazonic acid, ditryptophenaline and leporin B through controlling the respective SM biosynthetic gene clusters. We further show that both KdmB and RpdA regulate H3K4me3 and H3K9me3 levels, while RpdA also acts on H3K14ac levels in nuclear extracts. Therefore, the chromatin modifiers KdmB and RpdA of the KERS complex are key regulators for fungal development and SM metabolism in A. flavus.


Assuntos
Aflatoxinas , Aspergillus flavus , Humanos , Cromatina/metabolismo , Metabolismo Secundário/genética , Virulência , Proteínas Fúngicas/metabolismo , Aflatoxinas/genética , Regulação Fúngica da Expressão Gênica
7.
PLoS Genet ; 15(3): e1008053, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30883543

RESUMO

Eukaryotic striatin forms striatin-interacting phosphatase and kinase (STRIPAK) complexes that control many cellular processes including development, cellular transport, signal transduction, stem cell differentiation and cardiac functions. However, detailed knowledge of complex assembly and its roles in stress responses are currently poorly understood. Here, we discovered six striatin (StrA) interacting proteins (Sips), which form a heptameric complex in the filamentous fungus Aspergillus nidulans. The complex consists of the striatin scaffold StrA, the Mob3-type kinase coactivator SipA, the SIKE-like protein SipB, the STRIP1/2 homolog SipC, the SLMAP-related protein SipD and the catalytic and regulatory phosphatase 2A subunits SipE (PpgA), and SipF, respectively. Single and double deletions of the complex components result in loss of multicellular light-dependent fungal development, secondary metabolite production (e.g. mycotoxin Sterigmatocystin) and reduced stress responses. sipA (Mob3) deletion is epistatic to strA deletion by supressing all the defects caused by the lack of striatin. The STRIPAK complex, which is established during vegetative growth and maintained during the early hours of light and dark development, is mainly formed on the nuclear envelope in the presence of the scaffold StrA. The loss of the scaffold revealed three STRIPAK subcomplexes: (I) SipA only interacts with StrA, (II) SipB-SipD is found as a heterodimer, (III) SipC, SipE and SipF exist as a heterotrimeric complex. The STRIPAK complex is required for proper expression of the heterotrimeric VeA-VelB-LaeA complex which coordinates fungal development and secondary metabolism. Furthermore, the STRIPAK complex modulates two important MAPK pathways by promoting phosphorylation of MpkB and restricting nuclear shuttling of MpkC in the absence of stress conditions. SipB in A. nidulans is similar to human suppressor of IKK-ε(SIKE) protein which supresses antiviral responses in mammals, while velvet family proteins show strong similarity to mammalian proinflammatory NF-KB proteins. The presence of these proteins in A. nidulans further strengthens the hypothesis that mammals and fungi use similar proteins for their immune response and secondary metabolite production, respectively.


Assuntos
Aspergillus nidulans/metabolismo , Proteínas Fúngicas/metabolismo , Aspergillus nidulans/genética , Aspergillus nidulans/crescimento & desenvolvimento , Sequestradores de Radicais Livres/metabolismo , Proteínas Fúngicas/química , Proteínas Fúngicas/genética , Deleção de Genes , Genes Fúngicos , Proteínas de Fluorescência Verde/química , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Luz , Sistema de Sinalização das MAP Quinases , Modelos Biológicos , Membrana Nuclear/metabolismo , Estrutura Quaternária de Proteína , Proteínas Recombinantes de Fusão/química , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/metabolismo , Estresse Fisiológico
8.
Cardiol Young ; : 1-5, 2022 Jan 06.
Artigo em Inglês | MEDLINE | ID: mdl-34986921

RESUMO

OBJECTIVE: We aimed to evaluate the efficacy and role of high-sensitivity troponin T in children with a confirmed SARS-CoV-2 infection and also the correlation of troponin T levels with symptoms, and echocardiographic findings were analysed. METHODS: Two hundred and fourteen patients with a confirmed SARS-CoV-2 infection between the dates of 28 March and 15 August 12020 were enrolled in this retrospective single-centre study. Patients with comorbidities and diagnosed as multisystem inflammatory syndrome in children were excluded. Demographic data, clinical and laboratory parameters were evaluated. The patients were classified and compared according to the troponin positivity. The correlation of troponin T with symptoms and echocardiographic findings was analysed. RESULTS: The most common symptoms in the whole study group were fever (53.3%) and cough (24.8%). Troponin T levels were elevated in 15 (7%) patients. The most common symptom in patients with troponin positivity was also fever (73.3%). Troponin T positivity was significantly higher in patients under the age of 12 months and troponin T levels were negatively correlated with age. C-reactive protein levels were elevated in 77 (36%) of the patients in the whole group and 7 (46.7%) of 15 patients with troponin positivity. C-reactive protein levels were similar between groups. CONCLUSION: Routine troponin screening does not yield much information in previously healthy paediatric COVID-19 patients without any sign of myocardial dysfunction. Elevated troponin levels may be observed but it is mostly a sign of myocardial injury without detectable myocardial dysfunction in this group of patients.

9.
J Clin Immunol ; 41(7): 1563-1573, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34114123

RESUMO

Severe combined immunodeficiency is an inborn error of immunity characterized by impairments in the numbers and functions of T and B lymphocytes due to various genetic causes, and if it remains untreated, patients succumb to infections during the first 2 years of life. PURPOSE AND METHODS: This study reported retrospective data from 72 infants diagnosed with SCID including their major clinical features, HSCT characteristics, and outcomes over a 20-year period (1997-2017). RESULTS: Sixty-one of 72 SCID patients in the study underwent HSCT from 1997 to 2017. Median ages at the time of diagnosis and transplantation were 3.5 months and 5 months, respectively. Consanguinity was present in 68% of the patients, and T - B - NK + phenotype was predominantly identified. The overall survival was 80.3% over a 20-year period. However, the patients transplanted during an active infection had a lower survival rate of 73.9% compared to 100% for patients transplanted infection-free or with a previous infection that had resolved. The survival rate was significantly higher among recipients of HLA-identical transplants (92.9%), compared to recipients of mismatched related transplants (70%). The overall survival increased from 50 (1997-2006) to 85% (2007-2017) during the last 10 years. CONCLUSIONS: This is one of the largest single-center studies in Turkey with extensive experience about SCID patients. Early diagnosis of SCID patients before the onset of an infection and early transplantation are shown to be extremely important factors affecting the outcome and increasing the survival regardless of the donor type based on the results of this study.


Assuntos
Imunodeficiência Combinada Severa , Linfócitos B/imunologia , Feminino , Transplante de Células-Tronco Hematopoéticas/efeitos adversos , Humanos , Lactente , Estimativa de Kaplan-Meier , Células Matadoras Naturais/imunologia , Masculino , Estudos Retrospectivos , Imunodeficiência Combinada Severa/genética , Imunodeficiência Combinada Severa/imunologia , Imunodeficiência Combinada Severa/mortalidade , Imunodeficiência Combinada Severa/terapia , Linfócitos T/imunologia , Resultado do Tratamento , Turquia/epidemiologia
10.
Mol Microbiol ; 105(6): 880-900, 2017 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-28677124

RESUMO

Aspergillus fumigatus, a ubiquitous human fungal pathogen, produces asexual spores (conidia), which are the main mode of propagation, survival and infection of this human pathogen. In this study, we present the molecular characterization of a novel regulator of conidiogenesis and conidial survival called MybA because the predicted protein contains a Myb DNA binding motif. Cellular localization of the MybA::Gfp fusion and immunoprecipitation of the MybA::Gfp or MybA::3xHa protein showed that MybA is localized to the nucleus. RNA sequencing data and a uidA reporter assay indicated that the MybA protein functions upstream of wetA, vosA and velB, the key regulators involved in conidial maturation. The deletion of mybA resulted in a very significant reduction in the number and viability of conidia. As a consequence, the ΔmybA strain has a reduced virulence in an experimental murine model of aspergillosis. RNA-sequencing and biochemical studies of the ΔmybA strain suggested that MybA protein controls the expression of enzymes involved in trehalose biosynthesis as well as other cell wall and membrane-associated proteins and ROS scavenging enzymes. In summary, MybA protein is a new key regulator of conidiogenesis and conidial maturation and survival, and plays a crucial role in propagation and virulence of A. fumigatus.


Assuntos
Aspergillus fumigatus/genética , Esporos Fúngicos/genética , Aspergilose/microbiologia , Aspergillus fumigatus/metabolismo , Parede Celular/metabolismo , Proteínas Fúngicas/metabolismo , Deleção de Genes , Regulação Fúngica da Expressão Gênica/genética , Humanos , Proteínas de Membrana/metabolismo , Deleção de Sequência , Fatores de Transcrição/metabolismo , Virulência/genética
11.
Curr Genet ; 64(1): 141-146, 2018 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-28840304

RESUMO

Aspergillus fumigatus is an opportunistic human pathogen that causes various complications in patients with a weakened immune system functions. Asexual spores of A. fumigatus are responsible for initiation of aspergillosis. Long-term viability and proper germination of dormant conidia depend on trehalose accumulation, which protect the spores against thermal and oxidative stress. A putative Myb transcription factor, MybA has been recently found to be responsible for a variety of physiological and molecular roles ranging from conidiation, spore viability, trehalose accumulation, cell wall integrity and protection against reactive oxygen species. In this perspective review, we discuss the recent findings of MybA and its overlapping functions with the other regulators of conidia viability and trehalose accumulation. Therefore, the aim of this perspective is to raise interesting and stimulating questions on the molecular functions of MybA in conidiation and trehalose biogenesis and to question its genetic and physical interactions with the other regulators of conidial viability.


Assuntos
Aspergillus fumigatus/fisiologia , Viabilidade Microbiana/genética , Esporos Fúngicos/genética , Esporos Fúngicos/metabolismo , Fatores de Transcrição/genética , Meio Ambiente , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Interação Gene-Ambiente , Interações Hospedeiro-Patógeno , Humanos , Fatores de Transcrição/metabolismo
13.
PLoS Genet ; 8(7): e1002816, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22829779

RESUMO

The sexual Fus3 MAP kinase module of yeast is highly conserved in eukaryotes and transmits external signals from the plasma membrane to the nucleus. We show here that the module of the filamentous fungus Aspergillus nidulans (An) consists of the AnFus3 MAP kinase, the upstream kinases AnSte7 and AnSte11, and the AnSte50 adaptor. The fungal MAPK module controls the coordination of fungal development and secondary metabolite production. It lacks the membrane docking yeast Ste5 scaffold homolog; but, similar to yeast, the entire MAPK module's proteins interact with each other at the plasma membrane. AnFus3 is the only subunit with the potential to enter the nucleus from the nuclear envelope. AnFus3 interacts with the conserved nuclear transcription factor AnSte12 to initiate sexual development and phosphorylates VeA, which is a major regulatory protein required for sexual development and coordinated secondary metabolite production. Our data suggest that not only Fus3, but even the entire MAPK module complex of four physically interacting proteins, can migrate from plasma membrane to nuclear envelope.


Assuntos
Aspergillus nidulans , Sistema de Sinalização das MAP Quinases , Desenvolvimento Sexual/genética , Aspergillus nidulans/crescimento & desenvolvimento , Aspergillus nidulans/metabolismo , Membrana Celular/metabolismo , Núcleo Celular/metabolismo , MAP Quinase Quinase Quinases/genética , MAP Quinase Quinase Quinases/metabolismo , Sistema de Sinalização das MAP Quinases/genética , Sistema de Sinalização das MAP Quinases/fisiologia , Quinases de Proteína Quinase Ativadas por Mitógeno/genética , Quinases de Proteína Quinase Ativadas por Mitógeno/metabolismo , Proteínas Quinases Ativadas por Mitógeno/genética , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Membrana Nuclear/metabolismo , Feromônios/genética , Feromônios/metabolismo , Proteínas Quinases/genética , Proteínas Quinases/metabolismo , Saccharomyces cerevisiae/crescimento & desenvolvimento , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Transdução de Sinais
14.
J Craniofac Surg ; 25(1): 98-102, 2014 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-24240769

RESUMO

Over the past 60 years, many surgical techniques have been developed for the repair of nasoseptal perforations. This study describes a safe and practical technique involving the 5-layer repair of symptomatic nasoseptal perforations without mucosal flaps. The present study involved 23 patients (17 men and 6 women) who had symptomatic nasoseptal perforations in the Otorhinolaryngology and Head Neck Surgery Department of Haseki Research and Training Hospital. Patients were treated using the mucosal regeneration technique. Follow-up examinations were performed at 3 and 6 months postoperatively. The surgery was considered successful if total closure was achieved. Nasal mucosal physiology was also assessed preoperatively and at 3 and 6 months postoperatively by measuring the nasal mucociliary clearance time by means of the saccharin test. The most common etiological factor was former nasal surgery (56.5%), followed by nasal trauma (26%). In 4 patients (17.5%), the perforations were idiopathic. The average preoperative perforation size was 1.74 ± 0.87 cm. Total closure of the perforation was achieved in 21 patients (91.3%), and only 2 patients had subtotal healing. The mean preoperative mucociliary clearance time was 19.3 ± 4.15 minutes, which significantly improved to 12.4 ± 3.53 minutes and 10.1 ± 3.21 minutes at 3 and 6 postoperative months, respectively. Mucosal regeneration technique with interpositional grafts can be used to safely and reliably repair medium-to-large nasoseptal perforations.


Assuntos
Cartilagem/transplante , Perfuração do Septo Nasal/cirurgia , Adulto , Cartilagem da Orelha/cirurgia , Feminino , Seguimentos , Humanos , Masculino , Pessoa de Meia-Idade , Depuração Mucociliar/fisiologia , Mucosa Nasal/fisiologia , Septo Nasal/cirurgia , Regeneração/fisiologia , Rinoplastia/métodos , Retalhos Cirúrgicos/cirurgia , Coleta de Tecidos e Órgãos/métodos , Sítio Doador de Transplante/cirurgia , Cicatrização/fisiologia
15.
J Laryngol Otol ; 138(2): 130-135, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37646179

RESUMO

OBJECTIVE: To clarify the relationship between Eustachian tube dimensions and chronic otitis media aetiology using temporal bone computed tomography. METHODS: The data of 231 adults who had undergone surgery for unilateral chronic otitis media were reviewed retrospectively. Diseased and healthy ears were enrolled in groups 1 and 2, respectively. Group 1A included chronic otitis media with cholesteatoma (n = 28) and group 1B included chronic otitis media without cholesteatoma (n = 203). The Eustachian tube dimensions of groups 1 and 2 were compared, to clarify the relationship between the Eustachian tube dimensions and chronic otitis media aetiology. Groups 1A and 1B were compared to assess the effect of Eustachian tube dimensions on cholesteatoma development. RESULTS: The Eustachian tube was shorter, narrower and located more horizontally in ears with chronic otitis media. No significant difference was found between groups 1A and 1B. CONCLUSION: Eustachian tube dimensions are closely related to chronic otitis media aetiopathology, but are not related to cholesteatoma development.


Assuntos
Colesteatoma , Tuba Auditiva , Otite Média com Derrame , Otite Média , Adulto , Humanos , Tuba Auditiva/diagnóstico por imagem , Tuba Auditiva/patologia , Estudos Retrospectivos , Otite Média/diagnóstico por imagem , Otite Média/patologia , Colesteatoma/patologia , Tomografia Computadorizada por Raios X/métodos , Osso Temporal/diagnóstico por imagem , Osso Temporal/patologia , Doença Crônica , Otite Média com Derrame/patologia
16.
Cell Death Dis ; 15(2): 132, 2024 Feb 12.
Artigo em Inglês | MEDLINE | ID: mdl-38346967

RESUMO

The development of taxane resistance remains a major challenge for castration resistant prostate cancer (CR-PCa), despite the effectiveness of taxanes in prolonging patient survival. To uncover novel targets, we performed an epigenetic drug screen on taxane (docetaxel and cabazitaxel) resistant CR-PCa cells. We identified BRPF reader proteins, along with several epigenetic groups (CBP/p300, Menin-MLL, PRMT5 and SIRT1) that act as targets effectively reversing the resistance mediated by ABCB1. Targeting BRPFs specifically resulted in the resensitization of resistant cells, while no such effect was observed on the sensitive compartment. These cells were successfully arrested at the G2/M phase of cell cycle and underwent apoptosis upon BRPF inhibition, confirming the restoration of taxane susceptibility. Pharmacological inhibition of BRPFs reduced ABCB1 activity, indicating that BRPFs may be involved in an efflux-related mechanism. Indeed, ChIP-qPCR analysis confirmed binding of BRPF1 to the ABCB1 promoter suggesting direct regulation of the ABCB1 gene at the transcriptional level. RNA-seq analysis revealed that BRPF1 knockdown affects the genes enriched in mTORC1 and UPR signaling pathways, revealing potential mechanisms underlying its functional impact, which is further supported by the enhancement of taxane response through the combined inhibition of ABCB1 and mTOR pathways, providing evidence for the involvement of multiple BRPF1-regulated pathways. Beyond clinical attributes (Gleason score, tumor stage, therapy outcome, recurrence), metastatic PCa databases further supported the significance of BRPF1 in taxane resistance, as evidenced by its upregulation in taxane-exposed PCa patients.


Assuntos
Antineoplásicos , Hidrocarbonetos Aromáticos com Pontes , Neoplasias de Próstata Resistentes à Castração , Neoplasias da Próstata , Masculino , Humanos , Neoplasias da Próstata/tratamento farmacológico , Neoplasias da Próstata/genética , Neoplasias da Próstata/patologia , Taxoides/farmacologia , Taxoides/uso terapêutico , Docetaxel/farmacologia , Docetaxel/uso terapêutico , Epigênese Genética , Resistencia a Medicamentos Antineoplásicos/genética , Linhagem Celular Tumoral , Neoplasias de Próstata Resistentes à Castração/tratamento farmacológico , Neoplasias de Próstata Resistentes à Castração/genética , Neoplasias de Próstata Resistentes à Castração/patologia , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Proteínas que Contêm Bromodomínio , Proteínas de Ligação a DNA/genética , Proteínas Adaptadoras de Transdução de Sinal/genética , Proteína-Arginina N-Metiltransferases/genética
17.
Nat Commun ; 15(1): 33, 2024 01 02.
Artigo em Inglês | MEDLINE | ID: mdl-38167253

RESUMO

Aspergillus fumigatus is a saprophytic fungus that can cause a variety of human diseases known as aspergillosis. Mycotoxin gliotoxin (GT) production is important for its virulence and must be tightly regulated to avoid excess production and toxicity to the fungus. GT self-protection by GliT oxidoreductase and GtmA methyltransferase activities is related to the subcellular localization of these enzymes and how GT can be sequestered from the cytoplasm to avoid increased cell damage. Here, we show that GliT:GFP and GtmA:GFP are localized in the cytoplasm and in vacuoles during GT production. The Mitogen-Activated Protein kinase MpkA is essential for GT production and self-protection, interacts physically with GliT and GtmA and it is necessary for their regulation and subsequent presence in the vacuoles. The sensor histidine kinase SlnASln1 is important for modulation of MpkA phosphorylation. Our work emphasizes the importance of MpkA and compartmentalization of cellular events for GT production and self-defense.


Assuntos
Aspergilose , Gliotoxina , Humanos , Aspergillus fumigatus/metabolismo , Gliotoxina/metabolismo , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Proteínas Quinases Ativadas por Mitógeno/genética , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Aspergilose/microbiologia
18.
Fungal Genet Biol ; 56: 42-53, 2013 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-23644150

RESUMO

Light induces various responses in fungi including formation of asexual and sexual reproductive structures. The formation of conidia in the filamentous fungus Aspergillus nidulans is regulated by red and blue light receptors. Expression of conidia associated con genes, which are widely spread in the fungal kingdom, increases upon exposure to light. We have characterized the light-inducible conF and conJ genes of A. nidulans which are homologs of con-6 and con-10 of Neurospora crassa. con genes are expressed during conidia formation in asexual development. Five minutes light exposure are sufficient to induce conF or conJ expression in vegetative mycelia. Similar to N. crassa there were no significant phenotypes of single con mutations. A double conF and conJ deletion resulted in significantly increased cellular amounts of glycerol or erythritol. This leads to a delayed germination phenotype combined with increased resistance against desiccation. These defects were rescued by complementation of the double mutant strain with either conF or conJ. This suggests that fungal con genes exhibit redundant functions in controlling conidia germination and adjusting cellular levels of substances which protect conidia against dryness.


Assuntos
Aspergillus nidulans/crescimento & desenvolvimento , Aspergillus nidulans/genética , Proteínas Fúngicas/genética , Regulação Fúngica da Expressão Gênica/efeitos da radiação , Luz , Esporos Fúngicos/crescimento & desenvolvimento , Estresse Fisiológico , Sequência de Aminoácidos , Aspergillus nidulans/efeitos da radiação , Citosol/química , Eritritol/análise , Perfilação da Expressão Gênica , Técnicas de Inativação de Genes , Teste de Complementação Genética , Glicerol/análise , Dados de Sequência Molecular , Micélio/efeitos da radiação , Alinhamento de Sequência
19.
PLoS Genet ; 6(12): e1001226, 2010 Dec 02.
Artigo em Inglês | MEDLINE | ID: mdl-21152013

RESUMO

VeA is the founding member of the velvet superfamily of fungal regulatory proteins. This protein is involved in light response and coordinates sexual reproduction and secondary metabolism in Aspergillus nidulans. In the dark, VeA bridges VelB and LaeA to form the VelB-VeA-LaeA (velvet) complex. The VeA-like protein VelB is another developmental regulator, and LaeA has been known as global regulator of secondary metabolism. In this study, we show that VelB forms a second light-regulated developmental complex together with VosA, another member of the velvet family, which represses asexual development. LaeA plays a key role, not only in secondary metabolism, but also in directing formation of the VelB-VosA and VelB-VeA-LaeA complexes. LaeA controls VeA modification and protein levels and possesses additional developmental functions. The laeA null mutant results in constitutive sexual differentiation, indicating that LaeA plays a pivotal role in inhibiting sexual development in response to light. Moreover, the absence of LaeA results in the formation of significantly smaller fruiting bodies. This is due to the lack of a specific globose cell type (Hülle cells), which nurse the young fruiting body during development. This suggests that LaeA controls Hülle cells. In summary, LaeA plays a dynamic role in fungal morphological and chemical development, and it controls expression, interactions, and modification of the velvet regulators.


Assuntos
Aspergillus nidulans/crescimento & desenvolvimento , Aspergillus nidulans/efeitos da radiação , Proteínas Fúngicas/metabolismo , Regulação Fúngica da Expressão Gênica , Família Multigênica , Aspergillus nidulans/genética , Aspergillus nidulans/metabolismo , Proteínas Fúngicas/genética , Regulação Fúngica da Expressão Gênica/efeitos da radiação , Luz , Ligação Proteica
20.
J Fungi (Basel) ; 9(5)2023 May 19.
Artigo em Inglês | MEDLINE | ID: mdl-37233302

RESUMO

Organisms have developed different features to capture or sense sunlight. Vertebrates have evolved specialized organs (eyes) which contain a variety of photosensor cells that help them to see the light to aid orientation. Opsins are major photoreceptors found in the vertebrate eye. Fungi, with more than five million estimated members, represent an important clade of living organisms which have important functions for the sustainability of life on our planet. Light signalling regulates a range of developmental and metabolic processes including asexual sporulation, sexual fruit body formation, pigment and carotenoid production and even production of secondary metabolites. Fungi have adopted three groups of photoreceptors: (I) blue light receptors, White Collars, vivid, cryptochromes, blue F proteins and DNA photolyases, (II) red light sensors, phytochromes and (III) green light sensors and microbial rhodopsins. Most mechanistic data were elucidated on the roles of the White Collar Complex (WCC) and the phytochromes in the fungal kingdom. The WCC acts as both photoreceptor and transcription factor by binding to target genes, whereas the phytochrome initiates a cascade of signalling by using mitogen-activated protein kinases to elicit its cellular responses. Although the mechanism of photoreception has been studied in great detail, fungal photoreception has not been compared with vertebrate vision. Therefore, this review will mainly focus on mechanistic findings derived from two model organisms, namely Aspergillus nidulans and Neurospora crassa and comparison of some mechanisms with vertebrate vision. Our focus will be on the way light signalling is translated into changes in gene expression, which influences morphogenesis and metabolism in fungi.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA