RESUMO
Here, we, for the first time, compared the cardioprotective effects of third-generation vasodilating beta-blocker nebivolol (Neb) and conventional beta-blocker metoprolol (Met) on LPS-induced injury in H9c2 cardiomyoblasts. Our findings denoted that Neb and Met pretreatment diminish LPS-mediated cytotoxicity and oxidative stress. Concomitantly, LPS-triggered inflammatory cytokines activation was significantly suppressed by Neb but not by Met. Pretreatment with either Neb or Met alleviated LPS-mediated mitochondrial impairment by enhancing the expression of genes related to its biogenesis such as PGC-1α, NRF1, and TFAM. On the contrary, Neb but not Met-upregulated mitochondrial fusion-related genes such as OPA, and MFN2. In summary, our findings suggest that Neb and Met treatment significantly ameliorated the LPS-induced cytotoxicity and oxidative stress. Additionally, these findings suggest that Neb but not Met significantly down-regulates LPS-induced proinflammatory factors, probably by enhancing mitochondrial biogenesis and fusion.
RESUMO
OBJECTIVES: Considering the complementary nature of signalling mechanisms and the therapeutic effects of nebivolol, a ß1-adrenoreceptor antagonist, and valsartan, an angiotensin receptor blocker (ARB), here we aimed to investigate whether nebivolol/valsartan combination would complement the cardioprotective effects of nebivolol on angiotensin II (ANG II)-induced pathology in H9c2 cardiomyoblasts. METHODS: H9c2 cardiomyoblasts were used to investigate the protective effects of nebivolol and nebivolol and valsartan combination against ANG II-induced pathology. Reactive oxygen species (ROS) generation was determined by 2',7'-dichlorofluorescein diacetate (DCFDA) and MitoSOX Red staining. Real-time PCR and immunoblotting were employed to quantify the changes in mRNA and protein expression levels, respectively. KEY FINDINGS: Our data revealed that pretreatment with nebivolol and nebivolol/valsartan combination significantly reduced ANG II-induced oxidative stress and mTORC1 signalling. Concurrently, ANG II-induced activation of inflammatory cytokines and fetal gene expressions were significantly suppressed by nebivolol and nebivolol/valsartan combination. Pretreatment with nebivolol and nebivolol/valsartan combination alleviated ANG II-induced impairment of mitochondrial biogenesis by restoring the gene expression levels of PGC-1α, TFAM, NRF-1 and SIRT3. Our data further show that nebivolol and nebivolol/valsartan combination mediated up-regulation in mitochondrial biogenesis is accompanied by decrease in ANG II-stimulated mitochondrial ROS generation as well as increase in expression of mitochondrial fusion genes MFN2 and OPA1, indicative of improved mitochondrial dynamics. SUMMARY: These findings suggest that both nebivolol and nebivolol/valsartan combination exert protective effects on ANG II-induced mitochondrial dysfunction by alleviating its biogenesis and dynamics. Moreover, addition of valsartan to nebivolol do not produce any additive effects compared with nebivolol alone on ANG II-induced cardiac pathology.