RESUMO
Liver injury is a deleterious adverse effect associated with methimazole administration, and reactive intermediates are suspected to be involved in this complication. Glyoxal is an expected reactive intermediate produced during methimazole metabolism. Current investigation was undertaken to evaluate the role of carnosine, metformin, and N-acetyl cysteine as putative glyoxal (carbonyl) traps, against methimazole-induced hepatotoxicity. Methimazole (100 mg/kg, intraperitoneally) was administered to intact and/or glutathione (GSH)-depleted mice and the role of glyoxal trapping agents was investigated. Methimazole caused liver injury as revealed by an increase in serum alanine aminotransferase and aspartate aminotransferase. Moreover, lipid peroxidation and protein carbonylation occurred significantly in methimazole-treated animals' liver. Hepatic GSH reservoirs were decreased, and inflammatory cells infiltration was observed in liver histopathology. Methimazole-induced hepatotoxicity was severe in GSH-depleted mice and accompanied with interstitial hemorrhage and necrosis of the liver. Glyoxal trapping agents effectively diminished methimazole-induced liver injury both in intact and/or GSH-depleted animals.
Assuntos
Acetilcisteína/uso terapêutico , Carnosina/uso terapêutico , Doença Hepática Induzida por Substâncias e Drogas/tratamento farmacológico , Metformina/uso terapêutico , Metimazol/toxicidade , Alanina Transaminase/sangue , Animais , Aspartato Aminotransferases/sangue , Doença Hepática Induzida por Substâncias e Drogas/metabolismo , Doença Hepática Induzida por Substâncias e Drogas/patologia , Masculino , Camundongos , Necrose , Estresse Oxidativo/efeitos dos fármacos , Substâncias Protetoras/uso terapêuticoRESUMO
Methimazole is the most frequently prescribed antithyroid agent. On the other hand, several cases of liver injury are attributed to this drug. The mechanism of methimazole-induced liver injury is obscure. Hepatocytes mitochondria seem to be a target for methimazole cytotoxicity. Current investigation aimed to evaluate the effects of methimazole on the hepatocytes mitochondria in different experimental models. In the in vivo model, methimazole (100, 200 and 400mg/kg, i.p) was administered to mice and liver mitochondria were isolated and assessed. In the in vitro experiments, intact isolated liver mitochondria were incubated with increasing methimazole concentrations (10µM-100mM). It was found that methimazole decreased liver mitochondrial ATP and glutathione, increased mitochondrial swelling, lipid peroxidation and reactive oxygen species (ROS), and collapsed mitochondrial membrane potential when administered to mice. Paradoxically, methimazole not only caused no significant injury toward isolated liver mitochondria in vitro but improved mitochondrial function and protected this organelle. The differences between two investigated models in the current study might be associated with drug bioactivation and reactive metabolites formation. These findings suggest mitochondrial dysfunction as a mechanism for methimazole-induced liver injury. Moreover, methimazole seems to be a novel mitochondrial protecting agent in vitro.