Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Microb Ecol ; 84(1): 33-43, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-34468785

RESUMO

Geothermal soils offer unique insight into the way extreme environmental factors shape communities of organisms. However, little is known about the fungi growing in these environments and in particular how localized steep abiotic gradients affect fungal diversity. We used metabarcoding to characterize soil fungi surrounding a hot spring-fed thermal creek with water up to 84 °C and pH 10 in Yellowstone National Park. We found a significant association between fungal communities and soil variable principal components, and we identify the key trends in co-varying soil variables that explain the variation in fungal community. Saprotrophic and ectomycorrhizal fungi community profiles followed, and were significantly associated with, different soil variable principal components, highlighting potential differences in the factors that structure these different fungal trophic guilds. In addition, in vitro growth experiments in four target fungal species revealed a wide range of tolerances to pH levels but not to heat. Overall, our results documenting turnover in fungal species within a few hundred meters suggest many co-varying environmental factors structure the diverse fungal communities found in the soils of Yellowstone National Park.


Assuntos
Micobioma , Micorrizas , Fungos/genética , Parques Recreativos , Solo/química , Microbiologia do Solo
2.
Mol Ecol ; 29(21): 4157-4169, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-32866320

RESUMO

Human-altered environments can shape the evolution of organisms. Fungi are no exception, although little is known about how they withstand anthropogenic pollution. Here, we document adaptation in the mycorrhizal fungus Suillus luteus driven by soil heavy metal contamination. Genome scans across individuals from recently polluted and nearby unpolluted soils in Belgium revealed low divergence across isolates and no evidence of population structure based on soil type. However, we detected single nucleotide polymorphism divergence and gene copy-number variation, with different genetic combinations potentially conferring the ability to persist in contaminated soils. Variants were shared across the population but found to be under selection in isolates exposed to pollution and located across the genome, including in genes involved in metal exclusion, storage, immobilization and reactive oxygen species detoxification. Together, our results point to S. luteus undergoing the initial steps of adaptive divergence and contribute to understanding the processes underlying local adaptation under strong environmental selection.


Assuntos
Metais Pesados , Micorrizas , Poluentes do Solo , Basidiomycota , Bélgica , Humanos , Polimorfismo de Nucleotídeo Único/genética
4.
G3 (Bethesda) ; 14(9)2024 Sep 04.
Artigo em Inglês | MEDLINE | ID: mdl-39001865

RESUMO

Zinc (Zn) is a major soil contaminant and high Zn levels can disrupt growth, survival, and reproduction of fungi. Some fungal species evolved Zn tolerance through cell processes mitigating Zn toxicity, although the genes and detailed mechanisms underlying mycorrhizal fungal Zn tolerance remain unexplored. To fill this gap in knowledge, we investigated the gene expression of Zn tolerance in the ectomycorrhizal fungus Suillus luteus. We found that Zn tolerance in this species is mainly a constitutive trait that can also be environmentally dependent. Zinc tolerance in S. luteus is associated with differences in the expression of genes involved in metal exclusion and immobilization, as well as recognition and mitigation of metal-induced oxidative stress. Differentially expressed genes were predicted to be involved in transmembrane transport, metal chelation, oxidoreductase activity, and signal transduction. Some of these genes were previously reported as candidates for S. luteus Zn tolerance, while others are reported here for the first time. Our results contribute to understanding the mechanisms of fungal metal tolerance and pave the way for further research on the role of fungal metal tolerance in mycorrhizal associations.


Assuntos
Regulação Fúngica da Expressão Gênica , Micorrizas , Transcriptoma , Zinco , Zinco/metabolismo , Regulação Fúngica da Expressão Gênica/efeitos dos fármacos , Perfilação da Expressão Gênica , Basidiomycota/genética , Basidiomycota/efeitos dos fármacos , Estresse Oxidativo
5.
Mycologia ; 116(2): 322-349, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38363178

RESUMO

Xerampelinae is a subsection composed of species of ectomycorrhizal fungi belonging to the hyperdiverse and cosmopolitan genus Russula (Russulales). Species of Xerampelinae are recognized by their fishy or shrimp odor, browning context, and a green reaction to iron sulfate. However, species delimitation has traditionally relied on morphology and analysis of limited molecular data. Prior taxonomic work in Xerampelinae has led to the description of as many as 59 taxa in Europe and 19 in North America. Here we provide the first multilocus phylogeny of European and North American members based on two nrDNA loci and two protein-coding genes. The resulting phylogeny supports the recognition of 17 species-rank Xerampelinae clades; however, higher species richness (~23) is suggested by a more inclusive nuclear rDNA internal transcribed spacer region ITS1-5.8S-ITS2 (ITS barcode) analysis. Phylogenetic and morphological analyses support three new species with restricted geographic distributions: R. lapponica, R. neopascua, and R. olympiana. We confirm that the European species R. subrubens is present in North America and the North American species R. serissima (previously known as R. favrei) is present in Europe. Most other Xerampelinae appear restricted to either North America or Eurasia, which indicates a high degree of regional endemism; this includes R. xerampelina, a name widely applied to North American taxa, but a species restricted to Eurasia.


Assuntos
Agaricales , Basidiomycota , Filogenia , Análise de Sequência de DNA , Agaricales/genética , Basidiomycota/genética , DNA Ribossômico/genética , DNA Espaçador Ribossômico/genética , DNA Fúngico/genética
6.
PLoS One ; 18(3): e0283020, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36989258

RESUMO

Recent research has revealed the diversity and biomass of life across ecosystems, but how that biomass is distributed across body sizes of all living things remains unclear. We compile the present-day global body size-biomass spectra for the terrestrial, marine, and subterranean realms. To achieve this compilation, we pair existing and updated biomass estimates with previously uncatalogued body size ranges across all free-living biological groups. These data show that many biological groups share similar ranges of body sizes, and no single group dominates size ranges where cumulative biomass is highest. We then propagate biomass and size uncertainties and provide statistical descriptions of body size-biomass spectra across and within major habitat realms. Power laws show exponentially decreasing abundance (exponent -0.9±0.02 S.D., R2 = 0.97) and nearly equal biomass (exponent 0.09±0.01, R2 = 0.56) across log size bins, which resemble previous aquatic size spectra results but with greater organismal inclusivity and global coverage. In contrast, a bimodal Gaussian mixture model describes the biomass pattern better (R2 = 0.86) and suggests small (~10-15 g) and large (~107 g) organisms outweigh other sizes by one order magnitude (15 and 65 Gt versus ~1 Gt per log size). The results suggest that the global body size-biomass relationships is bimodal, but substantial one-to-two orders-of-magnitude uncertainty mean that additional data will be needed to clarify whether global-scale universal constraints or local forces shape these patterns.


Assuntos
Ecossistema , Biomassa , Tamanho Corporal , Incerteza
7.
Genetics ; 224(2)2023 05 26.
Artigo em Inglês | MEDLINE | ID: mdl-37070772

RESUMO

Studying the signatures of evolution can help to understand genetic processes. Here, we demonstrate how the existence of balancing selection can be used to identify the breeding systems of fungi from genomic data. The breeding systems of fungi are controlled by self-incompatibility loci that determine mating types between potential mating partners, resulting in strong balancing selection at the loci. Within the fungal phylum Basidiomycota, two such self-incompatibility loci, namely HD MAT locus and P/R MAT locus, control mating types of gametes. Loss of function at one or both MAT loci results in different breeding systems and relaxes the MAT locus from balancing selection. By investigating the signatures of balancing selection at MAT loci, one can infer a species' breeding system without culture-based studies. Nevertheless, the extreme sequence divergence among MAT alleles imposes challenges for retrieving full variants from both alleles when using the conventional read-mapping method. Therefore, we employed a combination of read-mapping and local de novo assembly to construct haplotypes of HD MAT alleles from genomes in suilloid fungi (genera Suillus and Rhizopogon). Genealogy and pairwise divergence of HD MAT alleles showed that the origins of mating types predate the split between these two closely related genera. High sequence divergence, trans-specific polymorphism, and the deeply diverging genealogy confirm the long-term functionality and multiallelic status of HD MAT locus in suilloid fungi. This work highlights a genomics approach to studying breeding systems regardless of the culturability of organisms based on the interplay between evolution and genetics.


Assuntos
Basidiomycota , Evolução Molecular , Melhoramento Vegetal , Basidiomycota/genética , Genômica , Polimorfismo Genético , Genes Fúngicos Tipo Acasalamento/genética , Filogenia , Fungos/genética
8.
FEMS Microbiol Rev ; 46(6)2022 11 02.
Artigo em Inglês | MEDLINE | ID: mdl-35675293

RESUMO

In this review, I explore the pervasive but underappreciated role of local adaptation in fungi. It has been difficult historically to study local adaptation in fungi because of the limited understanding of fungal species and their traits, but new hope has been offered with technological advances in sequencing. The filamentous nature of fungi invalidates some assumptions made in evolution because of their ability to exist as multinucleate entities with genetically different nuclei sharing the same cytoplasm. Many insights on local adaptation have come from studying fungi, and much of the empirical evidence gathered about local adaptation in the context of host-pathogen interactions comes from studying fungal virulence genes, drug resistance, and environmental adaptation. Together, these insights paint a picture of the variety of processes involved in fungal local adaptation and their connections to the unusual cell biology of Fungi (multinucleate, filamentous habit), but there is much that remains unknown, with major gaps in our knowledge of fungal species, their phenotypes, and the ways by which they adapt to local conditions.


Assuntos
Adaptação Fisiológica , Interações Hospedeiro-Patógeno , Adaptação Fisiológica/genética , Virulência/genética , Fenótipo , Fungos/genética
9.
PLoS One ; 16(2): e0246575, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33566818

RESUMO

Some but not all of the species of 'little brown mushrooms' in the genus Galerina contain deadly amatoxins at concentrations equaling those in the death cap, Amanita phalloides. However, Galerina's ~300 species are notoriously difficult to identify by morphology, and the identity of toxin-containing specimens has not been verified with DNA barcode sequencing. This left open the question of which Galerina species contain toxins and which do not. We selected specimens for toxin analysis using a preliminary phylogeny of the fungal DNA barcode region, the ribosomal internal transcribed spacer (ITS) region. Using liquid chromatography/mass spectrometry, we analyzed amatoxins from 70 samples of Galerina and close relatives, collected in western British Columbia, Canada. To put the presence of toxins into a phylogenetic context, we included the 70 samples in maximum likelihood analyses of 438 taxa, using ITS, RNA polymerase II second largest subunit gene (RPB2), and nuclear large subunit ribosomal RNA (LSU) gene sequences. We sequenced barcode DNA from types where possible to aid with applications of names. We detected amatoxins only in the 24 samples of the G. marginata s.l. complex in the Naucoriopsis clade. We delimited 56 putative Galerina species using Automatic Barcode Gap Detection software. Phylogenetic analysis showed moderate to strong support for Galerina infrageneric clades Naucoriopsis, Galerina, Tubariopsis, and Sideroides. Mycenopsis appeared paraphyletic and included Gymnopilus. Amatoxins were not detected in 46 samples from Galerina clades outside of Naucoriopsis or from outgroups. Our data show significant quantities of toxin in all mushrooms tested from the G. marginata s.l. complex. DNA barcoding revealed consistent accuracy in morphology-based identification of specimens to G. marginata s.l. complex. Prompt and careful morphological identification of ingested G. marginata s.l. has the potential to improve patient outcomes by leading to fast and appropriate treatment.


Assuntos
Agaricales/classificação , Agaricales/genética , Amanitinas/genética , Humanos , Funções Verossimilhança , Filogenia
10.
G3 (Bethesda) ; 10(12): 4591-4597, 2020 12 03.
Artigo em Inglês | MEDLINE | ID: mdl-33051263

RESUMO

Gene copy number variation across individuals has been shown to track population structure and be a source of adaptive genetic variation with significant fitness impacts. In this study, we report opposite results for both predictions based on the analysis of gene copy number variants (CNVs) of Suillus brevipes, a mycorrhizal fungus adapted to coastal and montane habitats in California. In order to assess whether gene copy number variation mirrored population structure and selection in this species, we investigated two previously studied locally adapted populations showing a highly differentiated genomic region encompassing a gene predicted to confer salt tolerance. In addition, we examined whether copy number in the genes related to salt homeostasis was differentiated between the two populations. Although we found many instances of CNV regions across the genomes of S. brevipes individuals, we also found CNVs did not recover population structure and known salt-tolerance-related genes were not under selection across the coastal population. Our results contrast with predictions of CNVs matching single-nucleotide polymorphism divergence and showed CNVs of genes for salt homeostasis are not under selection in S. brevipes.


Assuntos
Variações do Número de Cópias de DNA , Genoma , Basidiomycota , California , Dosagem de Genes , Humanos
11.
Elife ; 82019 10 25.
Artigo em Inglês | MEDLINE | ID: mdl-31650958

RESUMO

Chen et al. recently reported evidence for inter-nucleus recombination in arbuscular mycorrhizal fungi (Chen et al., 2018a). Here, we report a reanalysis of their data. After filtering the data by excluding heterozygous sites in haploid nuclei, duplicated regions of the genome, and low-coverage depths base calls, we find the evidence for recombination to be very sparse.


Assuntos
Micorrizas , Núcleo Celular , Evolução Molecular , Fungos/genética , Genoma Fúngico , Recombinação Genética
12.
G3 (Bethesda) ; 9(6): 1987-1998, 2019 06 05.
Artigo em Inglês | MEDLINE | ID: mdl-31015196

RESUMO

Recombination suppression on sex chromosomes often extends in a stepwise manner, generating evolutionary strata of differentiation between sex chromosomes. Sexual antagonism is a widely accepted explanation for evolutionary strata, postulating that sets of genes beneficial in only one sex are successively linked to the sex-determining locus. The anther-smut fungus Microbotryum lychnidis-dioicae has mating-type chromosomes with evolutionary strata, only some of which link mating-type genes. Male and female roles are non-existent in this fungus, but mating-type antagonistic selection can also generate evolutionary strata, although the life cycle of the fungus suggests it should be restricted to few traits. Here, we tested the hypothesis that mating-type antagonism may have triggered recombination suppression beyond mating-type genes in M. lychnidis-dioicae by searching for footprints of antagonistic selection in evolutionary strata not linking mating-type loci. We found that these evolutionary strata (i) were not enriched in genes upregulated in the haploid phase, where cells are of alternative mating types, (ii) carried no gene differentially expressed between mating types, and (iii) carried no genes displaying footprints of specialization in terms of protein sequences (dN/dS) between mating types after recommended filtering. Without filtering, eleven genes showed signs of positive selection in the strata not linking mating-type genes, which constituted an enrichment compared to autosomes, but their functions were not obviously involved in antagonistic selection. Thus, we found no strong evidence that antagonistic selection has contributed to extending recombination suppression beyond mating-type genes. Alternative hypotheses should therefore be explored to improve our understanding of the sex-related chromosome evolution.


Assuntos
Basidiomycota/genética , Cromossomos Fúngicos , Evolução Molecular , Genes Fúngicos Tipo Acasalamento/genética , Seleção Genética , Regulação Fúngica da Expressão Gênica , Haploidia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA