Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 86
Filtrar
1.
J Bacteriol ; 203(5)2021 02 08.
Artigo em Inglês | MEDLINE | ID: mdl-33288624

RESUMO

Protein phosphorylation is a universal mechanism for transducing cellular signals in prokaryotes and eukaryotes. The histidine kinase CckA, the histidine phosphotransferase ChpT, and the response regulator CtrA are conserved throughout the alphaproteobacteria. In Rhodobacter capsulatus, these proteins are key regulators of the gene transfer agent (RcGTA), which is present in several alphaproteobacteria. Using purified recombinant R. capsulatus proteins, we show in vitro autophosphorylation of CckA protein, and phosphotransfer to ChpT and thence to CtrA, to demonstrate biochemically that they form a phosphorelay. The secondary messenger cyclic di-GMP changed CckA from a kinase to a phosphatase, resulting in reversal of the phosphotransfer flow in the relay. The substitutions of two residues in CckA greatly affected the kinase or phosphatase activity of the protein in vitro, and production of mutant CckA proteins in vivo confirmed the importance of kinase but not phosphatase activity for the lytic release of RcGTA. However, phosphatase activity was needed to produce functional RcGTA particles. The binding of cyclic di-GMP to the wild-type and mutant CckA proteins was evaluated directly using a pulldown assay based on biotinylated cyclic di-GMP and streptavidin-linked beads.IMPORTANCE The CckA, ChpT, and CtrA phosphorelay proteins are widespread in the alphaproteobacteria, and there are two groups of organisms that differ in terms of whether this pathway is essential for cell viability. Little is known about the biochemical function of these proteins in organisms where the pathway is not essential, a group that includes Rhodobacter capsulatus This work demonstrates biochemically that CckA, ChpT, and CtrA also form a functional phosphorelay in the latter group and that the direction of phosphotransfer is reversed by cyclic di-GMP. It is important to improve understanding of more representatives of this pathway in order to obtain deeper insight into the function, composition, and evolutionary significance of a wider range of bacterial regulatory networks.


Assuntos
Proteínas de Bactérias/metabolismo , GMP Cíclico/análogos & derivados , Transferência Genética Horizontal , Histidina Quinase/metabolismo , Fosfotransferases/metabolismo , Rhodobacter capsulatus/genética , Rhodobacter capsulatus/metabolismo , Fatores de Transcrição/metabolismo , Substituição de Aminoácidos , Proteínas de Bactérias/genética , Proteínas de Bactérias/isolamento & purificação , GMP Cíclico/metabolismo , Técnicas de Transferência de Genes , Histidina Quinase/genética , Histidina Quinase/isolamento & purificação , Fosforilação , Fosfotransferases/genética , Fosfotransferases/isolamento & purificação , Proteínas Recombinantes/genética , Proteínas Recombinantes/isolamento & purificação , Proteínas Recombinantes/metabolismo , Transdução de Sinais , Fatores de Transcrição/genética , Fatores de Transcrição/isolamento & purificação
2.
J Bacteriol ; 201(23)2019 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-31501287

RESUMO

Bacteriophage-like gene transfer agents (GTAs) have been discovered in both of the prokaryotic branches of the three-domain phylogenetic tree of life. The production of a GTA (RcGTA) by the phototrophic alphaproteobacterium Rhodobacter capsulatus is regulated by quorum sensing and a phosphorelay homologous to systems in other species that control essential functions such as the initiation of chromosome replication and cell division. In wild-type strains, RcGTA is produced in <3% of cells in laboratory cultures. Mutants of R. capsulatus that exhibit greatly elevated production of RcGTA were created decades ago by chemical mutagenesis, but the nature and molecular consequences of the mutation were unknown. We show that the number of cells in a population that go on to express RcGTA genes is controlled by a stochastic process, in contrast to a genetic process. We used transposon mutagenesis along with a fluorescent protein reporter system and genome sequence data to identify a gene, rcc00280, that encodes an RTX family calcium-binding protein homologue. The Rc280 protein acts as an extracellular repressor of RcGTA gene expression by decreasing the percentage of cells that induce the production of RcGTA.IMPORTANCE GTAs catalyze horizontal gene transfer (HGT), which is important for genomic evolution because the majority of genes found in bacterial genomes have undergone HGT at some point in their evolution. Therefore, it is important to determine how the production of GTAs is regulated to understand the factors that modulate the frequency of gene transfer and thereby specify the tempo of evolution. This work describes a new type of genetic regulation in which an extracellular calcium-binding protein homologue represses the induction of the Rhodobacter capsulatus GTA, RcGTA.


Assuntos
Proteínas de Bactérias/genética , Proteínas de Ligação ao Cálcio/genética , Cálcio/metabolismo , Regulação Bacteriana da Expressão Gênica , Transferência Genética Horizontal , Rhodobacter capsulatus/genética , Proteínas de Bactérias/metabolismo , Proteínas de Ligação ao Cálcio/metabolismo , Divisão Celular , Elementos de DNA Transponíveis , Escherichia coli , Genes Reporter , Proteínas Luminescentes/genética , Proteínas Luminescentes/metabolismo , Mutagênese , Mutação , Filogenia , Plasmídeos/química , Plasmídeos/metabolismo , Percepção de Quorum/genética , Rhodobacter capsulatus/metabolismo , Processos Estocásticos , Sequenciamento Completo do Genoma , Proteína Vermelha Fluorescente
3.
Appl Environ Microbiol ; 84(11)2018 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-29625982

RESUMO

Several members of the Rhodobacterales (Alphaproteobacteria) produce a conserved horizontal gene transfer vector, called the gene transfer agent (GTA), that appears to have evolved from a bacteriophage. The model system used to study GTA biology is the Rhodobacter capsulatus GTA (RcGTA), a small, tailed bacteriophage-like particle produced by a subset of the cells in a culture. The response regulator CtrA is conserved in the Alphaproteobacteria and is an essential regulator of RcGTA production: it controls the production and maturation of the RcGTA particle and RcGTA release from cells. CtrA also controls the natural transformation-like system required for cells to receive RcGTA-donated DNA. Here, we report that dysregulation of the CckA-ChpT-CtrA phosphorelay either by the loss of the PAS domain protein DivL or by substitution of the autophosphorylation residue of the hybrid histidine kinase CckA decreased CtrA phosphorylation and greatly increased RcGTA protein production in R. capsulatus We show that the loss of the ClpXP protease or the three C-terminal residues of CtrA results in increased CtrA levels in R. capsulatus and identify ClpX(P) to be essential for the maturation of RcGTA particles. Furthermore, we show that CtrA phosphorylation is important for head spike production. Our results provide novel insight into the regulation of CtrA and GTAs in the RhodobacteralesIMPORTANCE Members of the Rhodobacterales are abundant in ocean and freshwater environments. The conserved GTA produced by many Rhodobacterales may have an important role in horizontal gene transfer (HGT) in aquatic environments and provide a significant contribution to their adaptation. GTA production is controlled by bacterial regulatory systems, including the conserved CckA-ChpT-CtrA phosphorelay; however, several questions about GTA regulation remain. Our identification that a short DivL homologue and ClpXP regulate CtrA in R. capsulatus extends the model of CtrA regulation from Caulobacter crescentus to a member of the Rhodobacterales We found that the magnitude of RcGTA production greatly depends on DivL and CckA kinase activity, adding yet another layer of regulatory complexity to RcGTA. RcGTA is known to undergo CckA-dependent maturation, and we extend the understanding of this process by showing that the ClpX chaperone is required for formation of tailed, DNA-containing particles.


Assuntos
Proteínas de Bactérias/genética , Endopeptidase Clp/genética , Regulação Bacteriana da Expressão Gênica , Rhodobacter capsulatus/enzimologia , Rhodobacter capsulatus/genética , Endopeptidase Clp/metabolismo , Transferência Genética Horizontal , Fosforilação , Domínios Proteicos
4.
Microbiology (Reading) ; 163(9): 1355-1363, 2017 09.
Artigo em Inglês | MEDLINE | ID: mdl-28869409

RESUMO

Small bacteriophage-like particles called gene transfer agents (GTAs) that mediate DNA transfer between cells are produced by a variety of prokaryotes. The model GTA, produced by the alphaproteobacterium Rhodobacter capsulatus (RcGTA), is controlled by several cellular regulators, and production is induced upon entry into the stationary phase. We report that RcGTA production and gene transfer are stimulated by nutrient depletion. Cells depleted of organic carbon or blocked for amino acid biosynthesis increased RcGTA production and release from cells. Furthermore, cells lacking the sole RelA-SpoT homologue produced decreased levels of RcGTA, and the RNA polymerase omega (ω) subunit was required for appreciable production of RcGTA.


Assuntos
RNA Polimerases Dirigidas por DNA/genética , RNA Polimerases Dirigidas por DNA/metabolismo , Transferência Genética Horizontal , Rhodobacter capsulatus/fisiologia , Aminoácidos/metabolismo , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Carbono/metabolismo , Regulação Bacteriana da Expressão Gênica , Mutação , Plasmídeos/genética , Regiões Promotoras Genéticas
5.
Nanotechnology ; 28(5): 054006, 2017 Feb 03.
Artigo em Inglês | MEDLINE | ID: mdl-28029108

RESUMO

Harvesting solar energy as a carbon free source can be a promising solution to the energy crisis and environmental pollution. Biophotovoltaics seek to mimic photosynthesis to harvest solar energy and to take advantage of the low material costs, negative carbon footprint, and material abundance. In the current study, we report on a combination of zinc oxide (ZnO) nanowires with monolayers of photosynthetic reaction centers which are self-assembled, via a cytochrome c linker, as photoactive electrode. In a three-probe biophotovoltaics cell, a photocurrent density of 5.5 µA cm-2 and photovoltage of 36 mV was achieved, using methyl viologen as a redox mediator in the electrolyte. Using ferrocene as a redox mediator a transient photocurrent density of 8.0 µA cm-2 was obtained, which stabilized at 6.4 µA cm-2 after 20 s. In-depth electronic structure characterization using photoemission spectroscopy in conjunction with electrochemical analysis suggests that the fabricated photoactive electrode can provide a proper electronic path for electron transport all the way from the conduction band of the ZnO nanowires, through the protein linker to the RC, and ultimately via redox mediator to the counter electrode.

6.
Proc Natl Acad Sci U S A ; 111(2): E237-44, 2014 Jan 14.
Artigo em Inglês | MEDLINE | ID: mdl-24379368

RESUMO

Bacteriophytochromes (BphPs) are light-sensing regulatory proteins encoded by photosynthetic and nonphotosynthetic bacteria. This protein class has been characterized structurally, but its biological activities remain relatively unexplored. Two BphPs in the anoxygenic photosynthetic bacterium Rhodopseudomonas palustris, designated regulatory proteins RpBphP2 and RpBphP3, are configured as light-regulated histidine kinases, which initiate a signal transduction system that controls expression of genes for the low light harvesting 4 (LH4) antenna complex. In vitro, RpBphP2 and RpBphP3 respond to light quality by reversible photoconversion, a property that requires the light-absorbing chromophore biliverdin. In vivo, RpBphP2 and RpBphP3 are both required for the expression of the LH4 antenna complex under anaerobic conditions, but biliverdin requires oxygen for its synthesis by heme oxygenase. On further investigation, we found that the apo-bacteriophytochrome forms of RpBphP2 and RpBphP3 are necessary and sufficient to control LH4 expression in response to light intensity in conjunction with other signal transduction proteins. One possibility is that the system senses a reduced quinone pool generated when light energy is absorbed by bacteriochlorophyll. The biliverdin-bound forms of the BphPs have the additional property of being able to fine-tune LH4 expression in response to light quality. These observations support the concept that some bacteriophytochromes can function with or without a chromophore and may be involved in regulating physiological processes not directly related to light sensing.


Assuntos
Regulação da Expressão Gênica/fisiologia , Oxigênio/metabolismo , Fotossíntese/fisiologia , Fitocromo/fisiologia , Rodopseudomonas/fisiologia , Transdução de Sinais/fisiologia , Benzoquinonas/metabolismo , Biliverdina/metabolismo , Mutagênese , Fitocromo/genética , Fitocromo/metabolismo , Espectrofotometria
7.
J Bacteriol ; 198(7): 1137-48, 2016 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-26833411

RESUMO

UNLABELLED: The gene transfer agent of Rhodobacter capsulatus (RcGTA) is a genetic exchange element that combines central aspects of bacteriophage-mediated transduction and natural transformation. RcGTA particles resemble a small double-stranded DNA bacteriophage, package random ∼4-kb fragments of the producing cell genome, and are released from a subpopulation (<1%) of cells in a stationary-phase culture. RcGTA particles deliver this DNA to surrounding R. capsulatus cells, and the DNA is integrated into the recipient genome though a process that requires homologs of natural transformation genes and RecA-mediated homologous recombination. Here, we report the identification of the LexA repressor, the master regulator of the SOS response in many bacteria, as a regulator of RcGTA activity. Deletion of the lexA gene resulted in the abolition of detectable RcGTA production and an ∼10-fold reduction in recipient capability. A search for SOS box sequences in the R. capsulatus genome sequence identified a number of putative binding sites located 5' of typical SOS response coding sequences and also 5' of the RcGTA regulatory gene cckA, which encodes a hybrid histidine kinase homolog. Expression of cckA was increased >5-fold in the lexA mutant, and a lexA cckA double mutant was found to have the same phenotype as a ΔcckA single mutant in terms of RcGTA production. The data indicate that LexA is required for RcGTA production and maximal recipient capability and that the RcGTA-deficient phenotype of the lexA mutant is largely due to the overexpression of cckA. IMPORTANCE: This work describes an unusual phenotype of a lexA mutant of the alphaproteobacterium Rhodobacter capsulatus in respect to the phage transduction-like genetic exchange carried out by the R. capsulatus gene transfer agent (RcGTA). Instead of the expected SOS response characteristic of prophage induction, this lexA mutation not only abolishes the production of RcGTA particles but also impairs the ability of cells to receive RcGTA-borne genes. The data show that, despite an apparent evolutionary relationship to lambdoid phages, the regulation of RcGTA gene expression differs radically.


Assuntos
Proteínas de Bactérias/metabolismo , Regulação Bacteriana da Expressão Gênica/fisiologia , Rhodobacter capsulatus/metabolismo , Resposta SOS em Genética/fisiologia , Serina Endopeptidases/metabolismo , Transcrição Gênica/fisiologia , Proteínas de Bactérias/genética , Sequência de Bases , Dados de Sequência Molecular , Mutação , Fosforilação , Rhodobacter capsulatus/citologia , Rhodobacter capsulatus/genética , Serina Endopeptidases/genética , Transdução de Sinais/fisiologia
8.
Biochemistry ; 55(35): 4909-18, 2016 09 06.
Artigo em Inglês | MEDLINE | ID: mdl-27478991

RESUMO

The influence of amino acid substitutions at position M214 (M-subunit, residue 214) on the rate and pathway of electron transfer involving the bacteriopheophytin cofactor, HA, in a bacterial photosynthetic reaction center has been explored in a series of Rhodobacter sphaeroides mutants. The M214 leucine (L) residue of the wild type was replaced with histidine (H), glutamine (Q), and asparagine (N), creating the mutants M214LH, M214LQ, and M214LN, respectively. As has been reported previously for M214LH, each of these mutations resulted in a bacteriochlorophyll molecule in place of a bacteriopheophytin in the HA pocket, forming so-called ß-type mutants (in which the HA cofactor is called ßA). In addition, these mutations changed the properties of the surrounding protein environment in terms of charge distribution and the amino acid side chain volume. Electron transfer reactions from the excited primary donor P to the acceptor QA were characterized using ultrafast transient absorption spectroscopic techniques. Similar to that of the previously characterized M214LH (ß mutant), the strong energetic mixing of the P(+)BA(-) and P(+)ßA(-) states (the mixed anion is denoted I(-)) increased the rate of charge recombination between P(+) and I(-) in competition with the I(-) → QA forward reaction. This reduced the overall yield of charge separation forming the P(+)QA(-) state. While the kinetics of the primary electron transfer forming P(+)I(-) were essentially identical in all three ß mutants, the rates of the ßA(-) (I(-)) → QA electron transfer in M214LQ and M214LH were very similar but quite different from that of the M214LN mutant. The observed yield changes and the differences in kinetics are correlated more closely with the volume of the mutated amino acid than with their charge characteristics. These results are consistent with those of previous studies of a series of M214 mutants with different sizes of amino acid side chains that did not alter the HA cofactor composition [Pan, J., et al. (2013) J. Phys. Chem. B 117, 7179-7189]. Both studies indicate that protein relaxation in this region of the reaction center plays a key role in stabilizing charge-separated states involving the HA or ßA cofactor. The effect is particularly pronounced for reactions occurring on time scales of tens and hundreds of picoseconds (forward transfer to the QA and charge recombination).


Assuntos
Bacterioclorofilas/química , Transporte de Elétrons , Feofitinas/química , Complexo de Proteínas do Centro de Reação Fotossintética/química , Cinética , Ligantes
9.
J Bacteriol ; 197(16): 2653-63, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-26031909

RESUMO

UNLABELLED: Gene transfer agents (GTAs) morphologically resemble small, double-stranded DNA (dsDNA) bacteriophages; however, their only known role is to package and transfer random pieces of the producing cell genome to recipient cells. The best understood GTA is that of Rhodobacter capsulatus, termed RcGTA. We discovered that homologues of three genes involved in natural transformation in other bacteria, comEC, comF, and comM, are essential for RcGTA-mediated gene acquisition. This paper gives genetic and biochemical evidence that RcGTA-borne DNA entry into cells requires the ComEC and ComF putative DNA transport proteins and genetic evidence that putative cytoplasmic ComM protein of unknown function is required for recipient capability. Furthermore, the master regulator of RcGTA production in <1% of a cell population, CtrA, which is also required for gene acquisition in recipient cells, is expressed in the vast majority of the population. Our results indicate that RcGTA-mediated gene transfer combines key aspects of two bacterial horizontal gene transfer mechanisms, where donor DNA is packaged in transducing phage-like particles and recipient cells take up DNA using natural transformation-related machinery. Both of these differentiated subsets of a culture population, donors and recipients, are dependent on the same response regulator, CtrA. IMPORTANCE: Horizontal gene transfer (HGT) is a major driver of bacterial evolution and adaptation to environmental stresses. Traits such as antibiotic resistance or metabolic properties can be transferred between bacteria via HGT; thus, HGT can have a tremendous effect on the fitness of a bacterial population. The three classically described HGT mechanisms are conjugation, transformation, and phage-mediated transduction. More recently, the HGT factor GTA was described, where random pieces of producing cell genome are packaged into phage-like particles that deliver DNA to recipient cells. In this report, we show that transport of DNA borne by the R. capsulatus RcGTA into recipient cells requires key genes previously thought to be specific to natural transformation pathways. These findings indicate that RcGTA combines central aspects of phage-mediated transduction and natural transformation in an efficient, regulated mode of HGT.


Assuntos
Proteínas de Bactérias/genética , Regulação Bacteriana da Expressão Gênica , Transferência Genética Horizontal , Rhodobacter capsulatus/genética , Proteínas de Bactérias/metabolismo , Bacteriófagos/genética , Biologia Computacional , DNA Bacteriano/genética , Plasmídeos/genética , Proteínas Recombinantes/genética
10.
Biochim Biophys Acta ; 1837(3): 366-74, 2014 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-24316146

RESUMO

The Zn-BChl-containing reaction center (RC) produced in a bchD (magnesium chelatase) mutant of Rhodobacter sphaeroides assembles with six Zn-bacteriochlorophylls (Zn-BChls) in place of four Mg-containing bacteriochlorophylls (BChls) and two bacteriopheophytins (BPhes). This protein presents unique opportunities for studying biological electron transfer, as Zn-containing chlorins can exist in 4-, 5-, and (theoretically) 6-coordinate states within the RC. In this paper, the electron transfer perturbations attributed exclusively to coordination state effects are separated from those attributed to the presence, absence, or type of metal in the bacteriochlorin at the HA pocket of the RC. The presence of a 4-coordinate Zn(2+) ion in the HA bacteriochlorin instead of BPhe results in a small decrease in the rates of the P*→P(+)HA(-)→P(+)QA(-) electron transfer, and the charge separation yield is not greatly perturbed; however coordination of the Zn(2+) by a fifth ligand provided by a histidine residue results in a larger rate decrease and yield loss. We also report the first crystal structure of a Zn-BChl-containing RC, confirming that the HA Zn-BChl was either 4- or 5-coordinate in the two types of Zn-BChl-containing RCs studied here. Interestingly, a large degree of disorder, in combination with a relatively weak anomalous difference electron density was found in the HB pocket. These data, in combination with spectroscopic results, indicate partial occupancy of this binding pocket. These findings provide insights into the use of BPhe as the bacteriochlorin pigment of choice at HA in both BChl- and Zn-BChl-containing RCs found in nature.


Assuntos
Proteínas de Bactérias/metabolismo , Bacterioclorofilas/metabolismo , Complexo de Proteínas do Centro de Reação Fotossintética/metabolismo , Porfirinas/metabolismo , Rhodobacter sphaeroides/metabolismo , Zinco/metabolismo , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Bacterioclorofilas/química , Cristalografia por Raios X , Cinética , Modelos Moleculares , Mutação , Complexo de Proteínas do Centro de Reação Fotossintética/química , Complexo de Proteínas do Centro de Reação Fotossintética/genética , Porfirinas/química , Conformação Proteica , Rhodobacter sphaeroides/genética , Zinco/química
11.
Mol Microbiol ; 92(6): 1260-78, 2014 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-24784901

RESUMO

Gene transfer agents (GTAs) are genetic exchange elements that resemble small DNA bacteriophages that transfer random pieces of the producing cell's genome to recipient cells. The best-studied GTA is that of Rhodobacter capsulatus, termed RcGTA. We discovered that the putative response regulator CtrA, which is essential for RcGTA production, is required for RcGTA-mediated gene acquisition, and confirmed that a RecA homologue is required. It was also discovered that a DprA (DNA-protecting protein A) homologue is essential for RcGTA-mediated gene acquisition, and that dprA expression is induced by gtaI-dependent quorum-sensing and non-phosphorylated CtrA. Modelling of the R. capsulatus DprA structure indicated the presence of a C-terminal region that resembles a dsDNA-binding protein domain. Purified His-tagged R. capsulatus DprA protein bound to both single-stranded (ss)DNA and double-stranded (ds)DNA, but with a greater affinity for ssDNA. Additionally, DprA protected dsDNA from endonuclease digestion, and increased the rate of nucleation of Escherichia coli RecA onto ssDNA. Single-cell expression analyses revealed that dprA is expressed in the majority of cells throughout a population. Overall, the results suggest that incorporation of RcGTA DNA into the recipient cell genome proceeds through a homologous recombination pathway resembling DNA recombination in natural transformation.


Assuntos
Proteínas de Bactérias/metabolismo , Proteínas de Ligação a DNA/metabolismo , Transferência Genética Horizontal , Proteínas de Membrana/metabolismo , Percepção de Quorum , Recombinases Rec A/metabolismo , Rhodobacter capsulatus/enzimologia , Rhodobacter capsulatus/fisiologia , Proteínas de Bactérias/química , Recombinação Homóloga , Proteínas de Membrana/química , Modelos Moleculares , Conformação Proteica , Rhodobacter capsulatus/genética , Rhodobacter capsulatus/metabolismo
12.
Biomacromolecules ; 16(4): 1112-8, 2015 Apr 13.
Artigo em Inglês | MEDLINE | ID: mdl-25798701

RESUMO

Bacterial photosynthetic reaction centers (RCs) are promising materials for solar energy harvesting, due to their high ratio of photogenerated electrons to absorbed photons and long recombination time of generated charges. In this work, photoactive electrodes were prepared from a bacterial RC-light-harvesting 1 (LH1) core complex, where the RC is encircled by the LH1 antenna, to increase light capture. A simple immobilization method was used to prepare RC-LH1 photoactive layer. Herein, we demonstrate that the combination of pretreatment of the RC-LH1 protein complexes with quinone and the immobilization method results in biophotoelectrochemical cells with a large peak transient photocurrent density and photocurrent response of 7.1 and 3.5 µA cm(-2), respectively. The current study with monochromatic excitation showed maximum external quantum efficiency (EQE) and photocurrent density of 0.21% and 2 µA cm(-2), respectively, with illumination power of ∼6 mW cm(-2) at ∼875 nm, under ambient conditions. This work provides new directions to higher performance biophotoelectrochemical cells as well as possibly other applications of this broadly functional photoactive material.


Assuntos
Proteínas de Bactérias/química , Fontes de Energia Bioelétrica , Proteínas Imobilizadas/química , Complexos de Proteínas Captadores de Luz/química , Proteínas de Bactérias/efeitos da radiação , Benzoquinonas/química , Eletricidade , Eletrodos , Proteínas Imobilizadas/efeitos da radiação , Complexos de Proteínas Captadores de Luz/efeitos da radiação , Rhodobacter sphaeroides/enzimologia , Luz Solar
13.
BMC Genomics ; 15: 730, 2014 Aug 28.
Artigo em Inglês | MEDLINE | ID: mdl-25164283

RESUMO

BACKGROUND: The genus Rhodobacter contains purple nonsulfur bacteria found mostly in freshwater environments. Representative strains of two Rhodobacter species, R. capsulatus and R. sphaeroides, have had their genomes fully sequenced and both have been the subject of transcriptional profiling studies. Gene co-expression networks can be used to identify modules of genes with similar expression profiles. Functional analysis of gene modules can then associate co-expressed genes with biological pathways, and network statistics can determine the degree of module preservation in related networks. In this paper, we constructed an R. capsulatus gene co-expression network, performed functional analysis of identified gene modules, and investigated preservation of these modules in R. capsulatus proteomics data and in R. sphaeroides transcriptomics data. RESULTS: The analysis identified 40 gene co-expression modules in R. capsulatus. Investigation of the module gene contents and expression profiles revealed patterns that were validated based on previous studies supporting the biological relevance of these modules. We identified two R. capsulatus gene modules preserved in the protein abundance data. We also identified several gene modules preserved between both Rhodobacter species, which indicate that these cellular processes are conserved between the species and are candidates for functional information transfer between species. Many gene modules were non-preserved, providing insight into processes that differentiate the two species. In addition, using Local Network Similarity (LNS), a recently proposed metric for expression divergence, we assessed the expression conservation of between-species pairs of orthologs, and within-species gene-protein expression profiles. CONCLUSIONS: Our analyses provide new sources of information for functional annotation in R. capsulatus because uncharacterized genes in modules are now connected with groups of genes that constitute a joint functional annotation. We identified R. capsulatus modules enriched with genes for ribosomal proteins, porphyrin and bacteriochlorophyll anabolism, and biosynthesis of secondary metabolites to be preserved in R. sphaeroides whereas modules related to RcGTA production and signalling showed lack of preservation in R. sphaeroides. In addition, we demonstrated that network statistics may also be applied within-species to identify congruence between mRNA expression and protein abundance data for which simple correlation measurements have previously had mixed results.


Assuntos
Perfilação da Expressão Gênica , Redes Reguladoras de Genes , Rhodobacter capsulatus/genética , Rhodobacter sphaeroides/genética , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Regulação Bacteriana da Expressão Gênica , Genes Bacterianos , Rhodobacter capsulatus/metabolismo , Rhodobacter sphaeroides/metabolismo , Transcriptoma
14.
J Am Chem Soc ; 136(12): 4599-604, 2014 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-24568563

RESUMO

Engineered cysteine residues near the primary electron donor (P) of the reaction center from the purple photosynthetic bacterium Rhodobacter sphaeroides were covalently conjugated to each of several dye molecules in order to explore the geometric design and spectral requirements for energy transfer between an artificial antenna system and the reaction center. An average of 2.5 fluorescent dye molecules were attached at specific locations near P. The enhanced absorbance cross-section afforded by conjugation of Alexa Fluor 660 dyes resulted in a 2.2-fold increase in the formation of reaction center charge-separated state upon intensity-limited excitation at 650 nm. The effective increase in absorbance cross-section resulting from the conjugation of two other dyes, Alexa Fluor 647 and Alexa Fluor 750, was also investigated. The key parameters that dictate the efficiency of dye-to-reaction center energy transfer and subsequent charge separation were examined using both steady-state and time-resolved fluorescence spectroscopy as well as transient absorbance spectroscopy techniques. An understanding of these parameters is an important first step toward developing more complex model light-harvesting systems integrated with reaction centers.


Assuntos
Fenômenos Ópticos , Complexo de Proteínas do Centro de Reação Fotossintética/química , Complexo de Proteínas do Centro de Reação Fotossintética/genética , Engenharia de Proteínas/métodos , Absorção , Citocromos c/metabolismo , Transferência de Energia , Modelos Moleculares , Oxirredução , Complexo de Proteínas do Centro de Reação Fotossintética/metabolismo , Conformação Proteica , Rhodobacter sphaeroides/enzimologia
15.
J Am Chem Soc ; 136(47): 16618-25, 2014 Nov 26.
Artigo em Inglês | MEDLINE | ID: mdl-25340853

RESUMO

A structurally and compositionally well-defined and spectrally tunable artificial light-harvesting system has been constructed in which multiple organic dyes attached to a three-arm-DNA nanostructure serve as an antenna conjugated to a photosynthetic reaction center isolated from Rhodobacter sphaeroides 2.4.1. The light energy absorbed by the dye molecules is transferred to the reaction center, where charge separation takes place. The average number of DNA three-arm junctions per reaction center was tuned from 0.75 to 2.35. This DNA-templated multichromophore system serves as a modular light-harvesting antenna that is capable of being optimized for its spectral properties, energy transfer efficiency, and photostability, allowing one to adjust both the size and spectrum of the resulting structures. This may serve as a useful test bed for developing nanostructured photonic systems.


Assuntos
DNA/metabolismo , Complexo de Proteínas do Centro de Reação Fotossintética/metabolismo , Rhodobacter sphaeroides/metabolismo , Corantes/química , Corantes/metabolismo , DNA/química , Transferência de Energia , Modelos Moleculares , Nanoestruturas/química , Complexo de Proteínas do Centro de Reação Fotossintética/química , Rhodobacter sphaeroides/química
16.
Mol Microbiol ; 87(4): 802-17, 2013 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-23279213

RESUMO

The gene transfer agent produced by Rhodobacter capsulatus (RcGTA) resembles a small tailed bacteriophage that packages almost random genomic DNA segments that may be transferred to other R. capsulatus cells. Gene transfer agents are produced by a number of prokaryotes; however, no receptors have been identified. We investigated the RcGTA recipient capability of wild-type R. capsulatus cells at different culture growth phases, and found that the frequency of RcGTA-dependent acquisition of an allele increases as cultures enter the stationary phase. We also found that RcGTA adsorption to cells follows a similar trend. RcGTA recipient capability and adsorption were found to be dependent on the GtaR/I quorum-sensing (QS) system. Production of an extracellular polysaccharide was found to be regulated by GtaR/I QS, as was production of the cell capsule. A number of QS-regulated putative polysaccharide biosynthesis genes were identified, and mutagenesis of two of these genes, rcc01081 and rcc01932, yielded strains that lack a capsule. Furthermore, these mutants were impaired in RcGTA recipient capability and adsorption, as was a non-encapsulated wild-type isolate of R. capsulatus. Overall, our results indicate that capsular polysaccharide is a receptor for the gene transfer agent of R. capsulatus, RcGTA.


Assuntos
Proteínas de Bactérias/metabolismo , Polissacarídeos Bacterianos/metabolismo , Percepção de Quorum , Rhodobacter capsulatus/genética , Transdução Genética , Proteínas de Bactérias/genética , Regulação Bacteriana da Expressão Gênica , Rhodobacter capsulatus/fisiologia
17.
Appl Environ Microbiol ; 80(21): 6807-18, 2014 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-25172853

RESUMO

Despite recent advances in metagenomic and single-cell genomic sequencing to investigate uncultivated microbial diversity and metabolic potential, fundamental questions related to population structure, interactions, and biogeochemical roles of candidate divisions remain. Numerous molecular surveys suggest that stratified ecosystems manifesting anoxic, sulfidic, and/or methane-rich conditions are enriched in these enigmatic microbes. Here we describe diversity, abundance, and cooccurrence patterns of uncultivated microbial communities inhabiting the permanently stratified waters of meromictic Sakinaw Lake, British Columbia, Canada, using 454 sequencing of the small-subunit rRNA gene with three-domain resolution. Operational taxonomic units (OTUs) were affiliated with 64 phyla, including more than 25 candidate divisions. Pronounced trends in community structure were observed for all three domains with eukaryotic sequences vanishing almost completely below the mixolimnion, followed by a rapid and sustained increase in methanogen-affiliated (∼10%) and unassigned (∼60%) archaeal sequences as well as bacterial OTUs affiliated with Chloroflexi (∼22%) and candidate divisions (∼28%). Network analysis revealed highly correlated, depth-dependent cooccurrence patterns between Chloroflexi, candidate divisions WWE1, OP9/JS1, OP8, and OD1, methanogens, and unassigned archaeal OTUs indicating niche partitioning and putative syntrophic growth modes. Indeed, pathway reconstruction using recently published Sakinaw Lake single-cell genomes affiliated with OP9/JS1 and OP8 revealed complete coverage of the Wood-Ljungdahl pathway with potential to drive syntrophic acetate oxidation to hydrogen and carbon dioxide under methanogenic conditions. Taken together, these observations point to previously unrecognized syntrophic networks in meromictic lake ecosystems with the potential to inform design and operation of anaerobic methanogenic bioreactors.


Assuntos
Archaea/classificação , Bactérias/classificação , Biota , Eucariotos/classificação , Lagos/microbiologia , Archaea/genética , Bactérias/genética , Colúmbia Britânica , Análise por Conglomerados , DNA Ribossômico/química , DNA Ribossômico/genética , Eucariotos/genética , Dados de Sequência Molecular , Filogenia , Análise de Sequência de DNA
18.
bioRxiv ; 2024 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-38915634

RESUMO

Single-stranded DNA bacteriophages of the Microviridae family are major components of the global virosphere. Microviruses are highly abundant in aquatic ecosystems and are prominent members of the mammalian gut microbiome, where their diversity has been linked to various chronic health disorders. Despite the clear importance of microviruses, little is known about the molecular mechanism of host infection. Here, we have characterized an exceptionally large microvirus, Ebor, and provide crucial insights into long-standing mechanistic questions. Cryogenic electron microscopy of Ebor revealed a capsid with trimeric protrusions that recognise lipopolysaccharides on the host surface. Cryogenic electron tomography of the host cell colonized with virus particles demonstrated that the virus initially attaches to the cell via five such protrusions, located at the corners of a single pentamer. This interaction triggers a stargate mechanism of capsid opening along the 5-fold symmetry axis, enabling delivery of the virus genome. Despite variations in specific virus-host interactions among different Microviridae family viruses, structural data indicate that the stargate mechanism of infection is universally employed by all members of the family. Startlingly, our data reveal a mechanistic link for the opening of relatively small capsids made out of a single jelly-roll fold with the structurally unrelated giant viruses.

19.
Biochemistry ; 52(13): 2206-17, 2013 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-23480277

RESUMO

In the native reaction center (RC) of Rhodobacter sphaeroides, the side chain of (M)L214 projects orthogonally toward the plane and into the center of the A branch bacteriopheophytin (BPhe) macrocycle. The possibility that this side chain is responsible for the dechelation of the central Mg(2+) of bacteriochlorophyll (BChl) was investigated by replacement of (M)214 with residues possessing small, nonpolar side chains that can neither coordinate nor block access to the central metal ion. The (M)L214 side chain was also replaced with Cys, Gln, and Asn to evaluate further the requirements for assembly of the RC with BChl in the HA pocket. Photoheterotrophic growth studies showed no difference in growth rates of the (M)214 nonpolar mutants at a low light intensity, but the growth of the amide-containing mutants was impaired. The absorbance spectra of purified RCs indicated that although absorbance changes are associated with the nonpolar mutations, the nonpolar mutant RC pigment compositions are the same as in the wild-type protein. Crystal structures of the (M)L214G, (M)L214A, and (M)L214N mutants were determined (determined to 2.2-2.85 Å resolution), confirming the presence of BPhe in the HA pocket and revealing alternative conformations of the phytyl tail of the accessory BChl in the BA site of these nonpolar mutants. Our results demonstrate that (i) BChl is converted to BPhe in a manner independent of the aliphatic side chain length of nonpolar residues replacing (M)214, (ii) BChl replaces BPhe if residue (M)214 has an amide-bearing side chain, (iii) (M)214 side chains containing sulfur are not sufficient to bind BChl in the HA pocket, and (iv) the (M)214 side chain influences the conformation of the phytyl tail of the BA BChl.


Assuntos
Proteínas de Bactérias/química , Bacterioclorofilas/análise , Feofitinas/análise , Complexo de Proteínas do Centro de Reação Fotossintética/química , Rhodobacter sphaeroides/química , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Bacterioclorofilas/metabolismo , Cristalografia por Raios X , Modelos Moleculares , Mutagênese Sítio-Dirigida , Feofitinas/metabolismo , Complexo de Proteínas do Centro de Reação Fotossintética/genética , Complexo de Proteínas do Centro de Reação Fotossintética/metabolismo , Conformação Proteica , Rhodobacter sphaeroides/genética , Rhodobacter sphaeroides/crescimento & desenvolvimento , Rhodobacter sphaeroides/metabolismo
20.
Mol Microbiol ; 83(4): 759-74, 2012 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-22211723

RESUMO

The gtaI gene of Rhodobacter capsulatus encodes an N-acyl-homoserine lactone (acyl-HSL) synthase. Immediately 5' of the gtaI gene is ORF rcc00328 that encodes a potential acyl-HSL receptor protein. A combination of genetic and biochemical approaches showed that rcc00328 (renamed gtaR) modulates the production of a genetic exchange element called the gene transfer agent (RcGTA), and regulates the transcription of gtaI. Although gtaI mutants exhibited decreased levels of RcGTA production, mutagenesis of gtaR did not, whereas a gtaR/gtaI double mutant produced wild-type levels of RcGTA. Because mutagenesis of gtaR suppressed the effect of the gtaI mutation, we suggest that the GtaR protein is a negative transcriptional regulator of RcGTA gene expression. We discovered that the gtaR and gtaI genes are co-transcribed, and also negatively regulated by the GtaR protein in the absence of acyl-HSL. A His-tagged GtaR protein was purified, and DNA-binding experiments revealed a binding site in the promoter region of the gtaRI operon. This GtaR protein did not bind to the RcGTA promoter region, and therefore modulation of RcGTA production appears to require at least one additional factor. We found that RcGTA production was stimulated by spent media from other species, and identified exogenous acyl-HSLs that induce RcGTA.


Assuntos
Proteínas de Bactérias/metabolismo , Regulação Bacteriana da Expressão Gênica , Óperon , Rhodobacter capsulatus/genética , Fatores de Transcrição/metabolismo , Transcrição Gênica , Proteínas de Bactérias/genética , Deleção de Genes , Rhodobacter capsulatus/metabolismo , Fatores de Transcrição/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA