Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 25
Filtrar
1.
New Phytol ; 230(4): 1354-1365, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33629360

RESUMO

Eastern Australia was subject to its hottest and driest year on record in 2019. This extreme drought resulted in massive canopy die-back in eucalypt forests. The role of hydraulic failure and tree size on canopy die-back in three eucalypt tree species during this drought was examined. We measured pre-dawn and midday leaf water potential (Ψleaf ), per cent loss of stem hydraulic conductivity and quantified hydraulic vulnerability to drought-induced xylem embolism. Tree size and tree health was also surveyed. Trees with most, or all, of their foliage dead exhibited high rates of native embolism (78-100%). This is in contrast to trees with partial canopy die-back (30-70% canopy die-back: 72-78% native embolism), or relatively healthy trees (little evidence of canopy die-back: 25-31% native embolism). Midday Ψleaf was significantly more negative in trees exhibiting partial canopy die-back (-2.7 to -6.3 MPa), compared with relatively healthy trees (-2.1 to -4.5 MPa). In two of the species the majority of individuals showing complete canopy die-back were in the small size classes. Our results indicate that hydraulic failure is strongly associated with canopy die-back during drought in eucalypt forests. Our study provides valuable field data to help constrain models predicting mortality risk.


Assuntos
Secas , Árvores , Austrália , Florestas , Folhas de Planta , Água , Xilema
2.
Glob Chang Biol ; 27(19): 4935-4945, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34170593

RESUMO

Addressing climate change risks requires collaboration and engagement across all sectors of society. In particular, effective partnerships are needed between research scientists producing new knowledge, policy-makers and practitioners who apply conservation actions on the ground. We describe the implementation of a model for increasing the application and useability of biodiversity research in climate adaptation policy and practice. The focus of the program was to increase the ability of a state government agency and natural resource practitioners in Australia to manage and protect biodiversity in a changing climate. The model comprised a five-stage process for enhancing impact (i) initiation of research projects that addressed priority conservation policy and management issues; (ii) co-design of the research using a collaborative approach involving multiple stakeholders; (iii) implementation of the research and design of decision tools and web-based resources; (iv) collaborative dissemination of the tools and resources via government and community working groups; and (v) evaluation of research impact. We report on the model development and implementation, and critically reflect on the model's impact. We share the lessons learnt from the challenges of operating within a stakeholder group with diverse objectives and criteria for success, and provide a template for creating an environmental research program with real world impact.


Assuntos
Biodiversidade , Recursos Naturais , Mudança Climática , Conservação dos Recursos Naturais , Políticas
3.
J Environ Manage ; 298: 113533, 2021 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-34411797

RESUMO

Among the many causes of habitat loss, urbanization coupled with climate change has produced some of the greatest local extinction rates and has led to the loss of many native species. Managing native vegetation in a rapidly expanding urban setting requires land management strategies that are cognizant of these impacts and how species and communities may adapt to a future climate. Here, we demonstrate how identifying climate refugia for threatened vegetation communities in an urban matrix can be used to support management decisions by local government authorities under the dual pressures of urban expansion and climate change. This research was focused on a local government area in New South Wales, Australia, that is undergoing significant residential, commercial and agricultural expansion resulting in the transition of native forest to other more intensive land-uses. Our results indicate that the key drivers of change from native vegetation to urban and agriculture classes were population density and the proximity to urban areas. We found two of the most cleared vegetation community types are physically restricted to land owned or managed by council, suggesting their long-term ecological viability is uncertain under a warming climate. We propose that land use planning decisions must recognize the compounding spatial and temporal pressures of urban development, land clearing and climate change, and how current policy responses, such as biodiversity offsetting, can respond positively to habitat shifts in order to secure the longevity of important ecological communities.


Assuntos
Mudança Climática , Conservação dos Recursos Naturais , Biodiversidade , Ecossistema , Florestas
6.
Glob Ecol Biogeogr ; 26(1): 43-53, 2017 01.
Artigo em Inglês | MEDLINE | ID: mdl-28111525

RESUMO

AIM: Plant invasions often follow initial introduction with a considerable delay. The current non-native flora of a region may hence contain species that are not yet naturalized but may become so in the future, especially if climate change lifts limitations on species spread. In Europe, non-native garden plants represent a huge pool of potential future invaders. Here, we evaluate the naturalization risk from this species pool and how it may change under a warmer climate. LOCATION: Europe. METHODS: We selected all species naturalized anywhere in the world but not yet in Europe from the set of non-native European garden plants. For this subset of 783 species, we used species distribution models to assess their potential European ranges under different scenarios of climate change. Moreover, we defined geographical hotspots of naturalization risk from those species by combining projections of climatic suitability with maps of the area available for ornamental plant cultivation. RESULTS: Under current climate, 165 species would already find suitable conditions in > 5% of Europe. Although climate change substantially increases the potential range of many species, there are also some that are predicted to lose climatically suitable area under a changing climate, particularly species native to boreal and Mediterranean biomes. Overall, hotspots of naturalization risk defined by climatic suitability alone, or by a combination of climatic suitability and appropriate land cover, are projected to increase by up to 102% or 64%, respectively. MAIN CONCLUSIONS: Our results suggest that the risk of naturalization of European garden plants will increase with warming climate, and thus it is very likely that the risk of negative impacts from invasion by these plants will also grow. It is therefore crucial to increase awareness of the possibility of biological invasions among horticulturalists, particularly in the face of a warming climate.

7.
Proc Natl Acad Sci U S A ; 108(6): 2306-11, 2011 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-21262825

RESUMO

The current rate of warming due to increases in greenhouse gas (GHG) emissions is very likely unprecedented over the last 10,000 y. Although the majority of countries have adopted the view that global warming must be limited to <2 °C, current GHG emission rates and nonagreement at Copenhagen in December 2009 increase the likelihood of this limit being exceeded by 2100. Extensive evidence has linked major changes in biological systems to 20th century warming. The "Global 200" comprises 238 ecoregions of exceptional biodiversity [Olson DM, Dinerstein E (2002) Ann Mo Bot Gard 89:199-224]. We assess the likelihood that, by 2070, these iconic ecoregions will regularly experience monthly climatic conditions that were extreme in 1961-1990. Using >600 realizations from climate model ensembles, we show that up to 86% of terrestrial and 83% of freshwater ecoregions will be exposed to average monthly temperature patterns >2 SDs (2σ) of the 1961-1990 baseline, including 82% of critically endangered ecoregions. The entire range of 89 ecoregions will experience extreme monthly temperatures with a local warming of <2 °C. Tropical and subtropical ecoregions, and mangroves, face extreme conditions earliest, some with <1 °C warming. In contrast, few ecoregions within Boreal Forests and Tundra biomes will experience such extremes this century. On average, precipitation regimes do not exceed 2σ of the baseline period, although considerable variability exists across the climate realizations. Further, the strength of the correlation between seasonal temperature and precipitation changes over numerous ecoregions. These results suggest many Global 200 ecoregions may be under substantial climatic stress by 2100.


Assuntos
Ecossistema , Efeito Estufa , Modelos Biológicos , Humanos
8.
Int J Biometeorol ; 58(6): 1147-62, 2014 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-23900579

RESUMO

There is substantial evidence of climate-related shifts to the timing of avian migration. Although spring arrival has generally advanced, variable species responses and geographical biases in data collection make it difficult to generalise patterns. We advance previous studies by using novel multivariate statistical techniques to explore complex relationships between phenological trends, climate indices and species traits. Using 145 datasets for 52 bird species, we assess trends in first arrival date (FAD), last departure date (LDD) and timing of peak abundance at multiple Australian locations. Strong seasonal patterns were found, i.e. spring phenological events were more likely to significantly advance, while significant advances and delays occurred in other seasons. However, across all significant trends, the magnitude of delays exceeded that of advances, particularly for FAD (+22.3 and -9.6 days/decade, respectively). Geographic variations were found, with greater advances in FAD and LDD, in south-eastern Australia than in the north and west. We identified four species clusters that differed with respect to species traits and climate drivers. Species within bird clusters responded in similar ways to local climate variables, particularly the number of raindays and rainfall. The strength of phenological trends was more strongly related to local climate variables than to broad-scale drivers (Southern Oscillation Index), highlighting the importance of precipitation as a driver of movement in Australian birds.


Assuntos
Migração Animal , Aves/fisiologia , Modelos Teóricos , Animais , Austrália , Clima , Análise por Conglomerados , Chuva , Temperatura
9.
Evolution ; 76(6): 1209-1228, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35304742

RESUMO

The expansions and contractions of a species' range in response to temporal changes in selective filters leave genetic signatures that can inform a more accurate reconstruction of their evolutionary history across the landscape. After a long period of continental decline, Australian rainforests settled into localized patterns of contraction or expansion during the climatic fluctuations of the Quaternary. The environmental impacts of recurring glacial and interglacial periods also intensified the arrival of new lineages from the Sunda shelf, and it can be expected that immigrant versus locally persistent taxa responded to environmental challenges in quantifiably different manner. To investigate how such differences impact on species' distribution, we contrast landscape genomic patterns and changes in habitat availability between a species with a long continental history on Doryphora sassafras and a Sunda-derived species (Toona ciliata), across a distributional overlap. Extensive landscape-level homogeneity across chloroplast and nuclear genomes for the Sunda-derived T. ciliata, characterize the genetic signature of a very recent invasion and a rapid southern "exploratory" expansion that had not been previously recorded in the Australian flora (i.e., of Gondwanan origin or Sahul-derived). In contrast, D. sassafras is consistent with other Sahul-derived species characterized by strong geographical divergence and regional differentiation. Interestingly, our findings suggest that admixture between genetically divergent populations during expansion events might be a contributing factor to the successful colonization of novel habitats. Overall, this study identifies some of the mechanisms regulating the rearrangements in species distributions and assemblage composition that follow major environmental shifts, and reminds us how a species' current range might not necessarily define species' habitat preference, with the consequence that estimates of past or future range might not always be reliable.


Assuntos
Ecossistema , Variação Genética , Austrália , Evolução Biológica , Mudança Climática , Geografia
10.
Curr Biol ; 32(22): 4890-4899.e4, 2022 11 21.
Artigo em Inglês | MEDLINE | ID: mdl-36323323

RESUMO

Earth's wilderness areas are reservoirs of genetic information and carbon storage systems, and are vital to reducing extinction risks. Retaining the conservation value of these areas is fundamental to achieving global biodiversity conservation goals; however, climate and land-use risk can undermine their ability to provide these functions. The extent to which wilderness areas are likely to be impacted by these drivers has not previously been quantified. Using climate and land-use change during baseline (1971-2005) and future (2016-2050) periods, we estimate that these stressors within wilderness areas will increase by ca. 60% and 39%, respectively, under a scenario of high emission and land-use change (SSP5-RCP8.5). Nearly half (49%) of all wilderness areas could experience substantial climate change by 2050 under this scenario, potentially limiting their capacity to shelter biodiversity. Notable climate (>5 km year-1) and land-use (>0.25 km year-1) changes are expected to occur more rapidly in the unprotected wilderness, including the edges of the Amazonian wilderness, Northern Russia, and Central Africa, which support unique assemblages of species and are critical for the preservation of biodiversity. However, an alternative scenario of sustainable development (SSP1-RCP2.6) would attenuate the projected climate velocity and land-use instability by 54% and 6%, respectively. Mitigating greenhouse gas emissions and preserving the remaining intact natural ecosystems can help fortify these bastions of biodiversity.


Assuntos
Ecossistema , Meio Selvagem , Conservação dos Recursos Naturais , Biodiversidade , Mudança Climática , Medição de Risco
11.
Nature ; 427(6970): 145-8, 2004 Jan 08.
Artigo em Inglês | MEDLINE | ID: mdl-14712274

RESUMO

Climate change over the past approximately 30 years has produced numerous shifts in the distributions and abundances of species and has been implicated in one species-level extinction. Using projections of species' distributions for future climate scenarios, we assess extinction risks for sample regions that cover some 20% of the Earth's terrestrial surface. Exploring three approaches in which the estimated probability of extinction shows a power-law relationship with geographical range size, we predict, on the basis of mid-range climate-warming scenarios for 2050, that 15-37% of species in our sample of regions and taxa will be 'committed to extinction'. When the average of the three methods and two dispersal scenarios is taken, minimal climate-warming scenarios produce lower projections of species committed to extinction ( approximately 18%) than mid-range ( approximately 24%) and maximum-change ( approximately 35%) scenarios. These estimates show the importance of rapid implementation of technologies to decrease greenhouse gas emissions and strategies for carbon sequestration.


Assuntos
Biodiversidade , Efeito Estufa , Modelos Teóricos , Animais , Carbono/metabolismo , Conservação dos Recursos Naturais , Geografia , Medição de Risco , Especificidade da Espécie , Fatores de Tempo
12.
PLoS One ; 15(2): e0213820, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32053591

RESUMO

Tephritid fruit flies are among the most destructive horticultural pests posing risks to Australia's multi-billion-dollar horticulture industry. Currently, there are 11 pest fruit fly species of economic concern in Australia. Of these, nine are native to this continent (Bactrocera aquilonis, B. bryoniae, B. halfordiae, B. jarvisi, B. kraussi, B. musae, B. neohumeralis, B. tryoni and Zeugodacus cucumis), while B. frauenfeldi and Ceratitis capitata are introduced. To varying degrees these species are costly to Australia's horticulture through in-farm management, monitoring to demonstrate pest freedom, quarantine and trade restrictions, and crop losses. Here, we used a common species distribution model, Maxent, to assess climate suitability for these 11 species under baseline (1960-1990) and future climate scenarios for Australia. Projections indicate that the Wet Tropics is likely to be vulnerable to all 11 species until at least 2070, with the east coast of Australia also likely to remain vulnerable to multiple species. While the Cape York Peninsula and Northern Territory are projected to have suitable climate for numerous species, extrapolation to novel climates in these areas decreases confidence in model projections. The climate suitability of major horticulture areas currently in eastern Queensland, southern-central New South Wales and southern Victoria to these pests may increase as climate changes. By highlighting areas at risk of pest range expansion in the future our study may guide Australia's horticulture industry in developing effective monitoring and management strategies.


Assuntos
Distribuição Animal , Mudança Climática , Monitorização de Parâmetros Ecológicos/métodos , Modelos Estatísticos , Tephritidae , Animais , Austrália , Geografia , Horticultura/métodos , Controle de Pragas/métodos , Estações do Ano , Análise Espacial , Temperatura
13.
Nat Commun ; 11(1): 994, 2020 02 24.
Artigo em Inglês | MEDLINE | ID: mdl-32094329

RESUMO

Conservation strategies based on charismatic flagship species, such as tigers, lions, and elephants, successfully attract funding from individuals and corporate donors. However, critics of this species-focused approach argue it wastes resources and often does not benefit broader biodiversity. If true, then the best way of raising conservation funds excludes the best way of spending it. Here we show that this conundrum can be resolved, and that the flagship species approach does not impede cost-effective conservation. Through a tailored prioritization approach, we identify places containing flagship species while also maximizing global biodiversity representation (based on 19,616 terrestrial and freshwater species). We then compare these results to scenarios that only maximized biodiversity representation, and demonstrate that our flagship-based approach achieves 79-89% of our objective. This provides strong evidence that prudently selected flagships can both raise funds for conservation and help target where these resources are best spent to conserve biodiversity.


Assuntos
Biodiversidade , Conservação dos Recursos Naturais/métodos , Análise Custo-Benefício , Obtenção de Fundos , Animais , Conservação dos Recursos Naturais/economia , Elefantes , Leões , Tigres
14.
Sci Total Environ ; 685: 451-462, 2019 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-31176230

RESUMO

Globally, local governments are increasing investment in urban greening projects. However, there is little consideration of whether the species being planted will be resilient to climate change. We assessed the distribution of climatically suitable habitat, now and in the future, for 176 tree species native to Australia, commonly planted across Australia's Significant Urban Areas (SUAs) and currently grown by commercial nurseries. Species' occurrence records were obtained from inventories and herbaria, globally and across Australia, and combined with baseline climate data (WorldClim, 1960-1990) and six climate scenarios for 2030 and 2070 using climatic suitability models (CSMs). CSMs for each species were calibrated and projected onto baseline and future scenarios. We calculated changes in the size of climatically suitable habitat for each species across each SUA, and identified urban areas that are likely to have suitable climate for either fewer or more of our study species under future climate. By 2070, climatically suitable habitat in SUAs is predicted to decline for 73% of species assessed. For 18% of these species, climatically suitable area is predicted to be more than halved, relative to their baseline extent. Generally, for urban areas in cooler regions, climatically suitable habitat is predicted to increase. By contrast, for urban areas in warmer regions, a greater proportion of tree species may lose climatically suitable habitat. Our results highlight changing patterns of urban climatic space for commonly planted species, suggesting that local governments and the horticultural industry should take a proactive approach to identify new climate-ready species for urban plantings.


Assuntos
Mudança Climática , Ecossistema , Austrália , Cidades/estatística & dados numéricos , Monitoramento Ambiental , Previsões , Modelos Teóricos , Árvores
15.
Ecol Lett ; 11(11): 1135-1146, 2008 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-18713269

RESUMO

Species distribution models (SDMs) are common tools for assessing the potential impact of climate change on species ranges. Uncertainty in SDM output occurs due to differences among alternate models, species characteristics and scenarios of future climate. While considerable effort is being devoted to identifying and quantifying the first two sources of variation, a greater understanding of climate scenarios and how they affect SDM output is also needed. Climate models are complex tools: variability occurs among alternate simulations, and no single 'best' model exists. The selection of climate scenarios for impacts assessments should not be undertaken arbitrarily - strengths and weakness of different climate models should be considered. In this paper, we provide bioclimatic modellers with an overview of emissions scenarios and climate models, discuss uncertainty surrounding projections of future climate and suggest steps that can be taken to reduce and communicate climate scenario-related uncertainty in assessments of future species responses to climate change.


Assuntos
Clima , Modelos Biológicos , Animais , Simulação por Computador , Demografia , Previsões , Efeito Estufa
16.
Sci Rep ; 8(1): 6118, 2018 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-29651148

RESUMO

A correction to this article has been published and is linked from the HTML and PDF versions of this paper. The error has been fixed in the paper.

17.
Ecol Evol ; 7(1): 48-57, 2017 01.
Artigo em Inglês | MEDLINE | ID: mdl-28070274

RESUMO

Establishing corridors of connecting habitat has become a mainstay conservation strategy to maintain gene flow and facilitate climate-driven range shifts. Yet, little attention has been given to ascertaining the extent to which corridors will benefit philopatric species, which might exhibit localized adaptation. Measures of genetic connectivity and adaptive genetic variation across species' ranges can help fill this knowledge gap. Here, we characterized the spatial genetic structure of Cunningham's skink (Egernia cunninghami), a philopatric species distributed along Australia's Great Dividing Range, and assessed evidence of localized adaptation. Analysis of 4,274 SNPs from 94 individuals sampled at four localities spanning 500 km and 4° of latitude revealed strong genetic structuring at neutral loci (mean FST ± SD = 0.603 ± 0.237) among the localities. Putatively neutral SNPs and those under divergent selection yielded contrasting spatial patterns, with the latter identifying two genetically distinct clusters. Given low genetic connectivity of the four localities, we suggest that the natural movement rate of this species is insufficient to keep pace with spatial shifts to its climate envelope, irrespective of habitat availability. In addition, our finding of localized adaptation highlights the risk of outbreeding depression should the translocation of individuals be adopted as a conservation management strategy.

18.
PLoS One ; 12(9): e0184193, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28873398

RESUMO

The ability of species to track their climate niche is dependent on their dispersal potential and the connectivity of the landscape matrix linking current and future suitable habitat. However, studies modeling climate-driven range shifts rarely address the movement of species across landscapes realistically, often assuming "unlimited" or "no" dispersal. Here, we incorporate dispersal rate and landscape connectivity with a species distribution model (Maxent) to assess the extent to which the Cunningham's skink (Egernia cunninghami) may be capable of tracking spatial shifts in suitable habitat as climate changes. Our model was projected onto four contrasting, but equally plausible, scenarios describing futures that are (relative to now) hot/wet, warm/dry, hot/with similar precipitation and warm/wet, at six time horizons with decadal intervals (2020-2070) and at two spatial resolutions: 1 km and 250 m. The size of suitable habitat was projected to decline 23-63% at 1 km and 26-64% at 250 m, by 2070. Combining Maxent output with the dispersal rate of the species and connectivity of the intervening landscape matrix showed that most current populations in regions projected to become unsuitable in the medium to long term, will be unable to shift the distance necessary to reach suitable habitat. In particular, numerous populations currently inhabiting the trailing edge of the species' range are highly unlikely to be able to disperse fast enough to track climate change. Unless these populations are capable of adaptation they are likely to be extirpated. We note, however, that the core of the species distribution remains suitable across the broad spectrum of climate scenarios considered. Our findings highlight challenges faced by philopatric species and the importance of adaptation for the persistence of peripheral populations under climate change.


Assuntos
Migração Animal/fisiologia , Mudança Climática , Ecossistema , Lagartos/fisiologia , Animais , Austrália , Conservação dos Recursos Naturais , Modelos Teóricos , Especificidade da Espécie
19.
Sci Rep ; 7(1): 12979, 2017 10 11.
Artigo em Inglês | MEDLINE | ID: mdl-29021590

RESUMO

Climate change vulnerability assessment (CCVA) has become a mainstay conservation decision support tool. CCVAs are recommended to incorporate three elements of vulnerability - exposure, sensitivity and adaptive capacity - yet, lack of data frequently leads to the latter being excluded. Further, weighted or unweighted scoring schemes, based on expert opinion, may be applied. Comparisons of these approaches are rare. In a CCVA for 17 Australian lizard species, we show that membership within three vulnerability categories (low, medium and high) generally remained similar regardless of the framework or scoring scheme. There was one exception however, where, under the warm/dry scenario for 2070, including adaptive capacity lead to five fewer species being classified as highly vulnerable. Two species, Eulamprus leuraensis and E. kosciuskoi, were consistently ranked the most vulnerable, primarily due to projected losses in climatically suitable habitat, narrow thermal tolerance and specialist habitat requirements. Our findings provide relevant information for prioritizing target species for conservation and choosing appropriate conservation actions. We conclude that for the species included in this study, the framework and scoring scheme used had little impact on the identification of the most vulnerable species. We caution, however, that this outcome may not apply to other taxa or regions.


Assuntos
Adaptação Fisiológica , Mudança Climática , Animais , Lagartos/fisiologia , Especificidade da Espécie
20.
PeerJ ; 5: e3446, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28652933

RESUMO

BACKGROUND: Shrubs play a key role in biogeochemical cycles, prevent soil and water erosion, provide forage for livestock, and are a source of food, wood and non-wood products. However, despite their ecological and societal importance, the influence of different environmental variables on shrub distributions remains unclear. We evaluated the influence of climate and soil characteristics, and whether including soil variables improved the performance of a species distribution model (SDM), Maxent. METHODS: This study assessed variation in predictions of environmental suitability for 29 Australian shrub species (representing dominant members of six shrubland classes) due to the use of alternative sets of predictor variables. Models were calibrated with (1) climate variables only, (2) climate and soil variables, and (3) soil variables only. RESULTS: The predictive power of SDMs differed substantially across species, but generally models calibrated with both climate and soil data performed better than those calibrated only with climate variables. Models calibrated solely with soil variables were the least accurate. We found regional differences in potential shrub species richness across Australia due to the use of different sets of variables. CONCLUSIONS: Our study provides evidence that predicted patterns of species richness may be sensitive to the choice of predictor set when multiple, plausible alternatives exist, and demonstrates the importance of considering soil properties when modeling availability of habitat for plants.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA