Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
1.
Mov Disord ; 36(5): 1147-1157, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33458877

RESUMO

BACKGROUND: Similar to some monogenic forms of dystonia, levodopa-induced dyskinesia is a hyperkinetic movement disorder with abnormal nigrostriatal dopaminergic neurotransmission. Molecularly, it is characterized by hyper-induction of phosphorylation of extracellular signal-related kinase in response to dopamine in medium spiny neurons of the direct pathway. OBJECTIVES: The objective of this study was to determine if mouse models of monogenic dystonia exhibit molecular features of levodopa-induced dyskinesia. METHODS: Western blotting and quantitative immunofluorescence was used to assay baseline and/or dopamine-induced levels of the phosphorylated kinase in the striatum in mouse models of DYT1, DYT6, and DYT25 expressing a reporter in dopamine D1 receptor-expressing projection neurons. Cyclic adenosine monophosphate (cAMP) immunoassay and adenylyl cyclase activity assays were also performed. RESULTS: In DYT1 and DYT6 models, blocking dopamine reuptake with cocaine leads to enhanced extracellular signal-related kinase phosphorylation in dorsomedial striatal medium spiny neurons in the direct pathway, which is abolished by pretreatment with the N-methyl-d-aspartate antagonist MK-801. Phosphorylation is decreased in a model of DYT25. Levels of basal and stimulated cAMP and adenylyl cyclase activity were normal in the DYT1 and DYT6 mice and decreased in the DYT25 mice. Oxotremorine induced increased abnormal movements in the DYT1 knock-in mice. CONCLUSIONS: The increased dopamine induction of extracellular signal-related kinase phosphorylation in 2 genetic types of dystonia, similar to what occurs in levodopa-induced dyskinesia, and its decrease in a third, suggests that abnormal signal transduction in response to dopamine in the postsynaptic nigrostriatal pathway might be a point of convergence for dystonia and other hyperkinetic movement disorders, potentially offering common therapeutic targets. © 2021 International Parkinson and Movement Disorder Society.


Assuntos
Distonia , Animais , Corpo Estriado/metabolismo , Dopamina , Distonia/induzido quimicamente , Distonia/genética , Técnicas de Introdução de Genes , Camundongos , Camundongos Endogâmicos C57BL , Chaperonas Moleculares/metabolismo , Fosforilação
2.
PLoS Genet ; 14(1): e1007169, 2018 01.
Artigo em Inglês | MEDLINE | ID: mdl-29364887

RESUMO

Dystonia is characterized by involuntary muscle contractions. Its many forms are genetically, phenotypically and etiologically diverse and it is unknown whether their pathogenesis converges on shared pathways. Mutations in THAP1 [THAP (Thanatos-associated protein) domain containing, apoptosis associated protein 1], a ubiquitously expressed transcription factor with DNA binding and protein-interaction domains, cause dystonia, DYT6. There is a unique, neuronal 50-kDa Thap1-like immunoreactive species, and Thap1 levels are auto-regulated on the mRNA level. However, THAP1 downstream targets in neurons, and the mechanism via which it causes dystonia are largely unknown. We used RNA-Seq to assay the in vivo effect of a heterozygote Thap1 C54Y or ΔExon2 allele on the gene transcription signatures in neonatal mouse striatum and cerebellum. Enriched pathways and gene ontology terms include eIF2α Signaling, Mitochondrial Dysfunction, Neuron Projection Development, Axonal Guidance Signaling, and Synaptic LongTerm Depression, which are dysregulated in a genotype and tissue-dependent manner. Electrophysiological and neurite outgrowth assays were consistent with those enrichments, and the plasticity defects were partially corrected by salubrinal. Notably, several of these pathways were recently implicated in other forms of inherited dystonia, including DYT1. We conclude that dysfunction of these pathways may represent a point of convergence in the pathophysiology of several forms of inherited dystonia.


Assuntos
Proteínas Reguladoras de Apoptose/genética , Proteínas de Ligação a DNA/genética , Distonia/genética , Mutação , Rede Nervosa/fisiologia , Neurônios/fisiologia , Proteínas Nucleares/genética , Animais , Animais Recém-Nascidos , Células Cultivadas , Humanos , Células K562 , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Rede Nervosa/metabolismo , Plasticidade Neuronal/genética
3.
J Neurosci ; 36(40): 10245-10256, 2016 10 05.
Artigo em Inglês | MEDLINE | ID: mdl-27707963

RESUMO

Dystonia type 1 (DYT1) is a dominantly inherited neurological disease caused by mutations in TOR1A, the gene encoding the endoplasmic reticulum (ER)-resident protein torsinA. Previous work mostly completed in cell-based systems suggests that mutant torsinA alters protein processing in the secretory pathway. We hypothesized that inducing ER stress in the mammalian brain in vivo would trigger or exacerbate mutant torsinA-induced dysfunction. To test this hypothesis, we crossed DYT1 knock-in with p58(IPK)-null mice. The ER co-chaperone p58(IPK) interacts with BiP and assists in protein maturation by helping to fold ER cargo. Its deletion increases the cellular sensitivity to ER stress. We found a lower generation of DYT1 knock-in/p58 knock-out mice than expected from this cross, suggesting a developmental interaction that influences viability. However, surviving animals did not exhibit abnormal motor function. Analysis of brain tissue uncovered dysregulation of eiF2α and Akt/mTOR translational control pathways in the DYT1 brain, a finding confirmed in a second rodent model and in human brain. Finally, an unbiased proteomic analysis identified relevant changes in the neuronal protein landscape suggesting abnormal ER protein metabolism and calcium dysregulation. Functional studies confirmed the interaction between the DYT1 genotype and neuronal calcium dynamics. Overall, these findings advance our knowledge on dystonia, linking translational control pathways and calcium physiology to dystonia pathogenesis and identifying potential new pharmacological targets. SIGNIFICANCE STATEMENT: Dystonia type 1 (DYT1) is one of the different forms of inherited dystonia, a neurological disorder characterized by involuntary, disabling movements. DYT1 is caused by mutations in the gene that encodes the endoplasmic reticulum (ER)-resident protein torsinA. How mutant torsinA causes neuronal dysfunction remains unknown. Here, we show the behavioral and molecular consequences of stressing the ER in DYT1 mice by increasing the amount of misfolded proteins. This resulted in the generation of a reduced number of animals, evidence of abnormal ER protein processing and dysregulation of translational control pathways. The work described here proposes a shared mechanism for different forms of dystonia, links for the first time known biological pathways to dystonia pathogenesis, and uncovers potential pharmacological targets for its treatment.


Assuntos
Distonia/genética , Distonia/fisiopatologia , Retículo Endoplasmático/genética , Chaperonas Moleculares/genética , Animais , Comportamento Animal , Sinalização do Cálcio/genética , Cerebelo/fisiopatologia , Distonia/psicologia , Estresse do Retículo Endoplasmático/genética , Regulação da Expressão Gênica/genética , Técnicas de Introdução de Genes , Genótipo , Proteínas de Choque Térmico HSP40/genética , Proteínas de Choque Térmico HSP40/metabolismo , Humanos , Camundongos , Camundongos Knockout , Neurônios/fisiologia , Transdução de Sinais/genética
4.
Neurobiol Dis ; 73: 70-82, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25281317

RESUMO

Current research on Parkinson's disease (PD) pathogenesis requires relevant animal models that mimic the gradual and progressive development of neuronal dysfunction and degeneration that characterizes the disease. Polymorphisms in engrailed 1 (En1), a homeobox transcription factor that is crucial for both the development and survival of mesencephalic dopaminergic neurons, are associated with sporadic PD. This suggests that En1 mutant mice might be a promising candidate PD model. Indeed, a mouse that lacks one En1 allele exhibits decreased mitochondrial complex I activity and progressive midbrain dopamine neuron degeneration in adulthood, both features associated with PD. We aimed to further characterize the disease-like phenotype of these En1(+/-) mice with a focus on early neurodegenerative changes that can be utilized to score efficacy of future disease modifying studies. We observed early terminal defects in the dopaminergic nigrostriatal pathway in En1(+/-) mice. Several weeks before a significant loss of dopaminergic neurons in the substantia nigra could be detected, we found that striatal terminals expressing high levels of dopaminergic neuron markers TH, VMAT2, and DAT were dystrophic and swollen. Using transmission electron microscopy, we identified electron dense bodies consistent with abnormal autophagic vacuoles in these terminal swellings. In line with these findings, we detected an up-regulation of the mTOR pathway, concurrent with a downregulation of the autophagic marker LC3B, in ventral midbrain and nigral dopaminergic neurons of the En1(+/-) mice. This supports the notion that autophagic protein degradation is reduced in the absence of one En1 allele. We imaged the nigrostriatal pathway using the CLARITY technique and observed many fragmented axons in the medial forebrain bundle of the En1(+/-) mice, consistent with axonal maintenance failure. Using in vivo electrochemistry, we found that nigrostriatal terminals in the dorsal striatum were severely deficient in dopamine release and reuptake. Our findings support a progressive retrograde degeneration of En1(+/-) nigrostriatal neurons, akin to what is suggested to occur in PD. We suggest that using the En1(+/-) mice as a model will provide further key insights into PD pathogenesis, and propose that axon terminal integrity and function can be utilized to estimate dopaminergic neuron health and efficacy of experimental PD therapies.


Assuntos
Corpo Estriado/metabolismo , Corpo Estriado/patologia , Proteínas de Homeodomínio/genética , Degeneração Neural/etiologia , Doença de Parkinson , Substância Negra/patologia , Ácido 3,4-Di-Hidroxifenilacético/metabolismo , Animais , Autofagia/genética , Modelos Animais de Doenças , Progressão da Doença , Neurônios Dopaminérgicos/metabolismo , Neurônios Dopaminérgicos/patologia , Neurônios Dopaminérgicos/ultraestrutura , Regulação da Expressão Gênica/genética , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Ácido Homovanílico/metabolismo , Camundongos , Camundongos Transgênicos , Doença de Parkinson/complicações , Doença de Parkinson/genética , Doença de Parkinson/patologia , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/genética , Substância Negra/metabolismo , Serina-Treonina Quinases TOR/metabolismo , Fatores de Tempo , Tirosina 3-Mono-Oxigenase/genética , Tirosina 3-Mono-Oxigenase/metabolismo
5.
Brain Res ; 1706: 24-31, 2019 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-30366018

RESUMO

DYT1 dystonia is a neurological disease caused by a dominant mutation that results in the loss of a glutamic acid in the endoplasmic reticulum-resident protein torsinA. Currently, treatments are symptomatic and only provide partial relief. Multiple reports support the hypothesis that selectively reducing expression of mutant torsinA without affecting levels of the wild type protein should be beneficial. Published cell-based studies support this hypothesis. It is unclear, however, if phenotypes are reversible by targeting the molecular defect once established in vivo. Here, we generated adeno-associated virus encoding artificial microRNA targeting human mutant torsinA and delivered them to the striatum of symptomatic transgenic rats that express the full human TOR1A mutant gene. We achieved efficient suppression of human mutant torsinA expression in DYT1 transgenic rats, partly reversing its accumulation in the nuclear envelope. This intervention rescued PERK-eIF2α pathway dysregulation in striatal projection neurons but not behavioral abnormalities. Moreover, we found abnormal expression of components of dopaminergic neurotransmission in DYT1 rat striatum, which were not normalized by suppressing mutant torsinA expression. Our findings demonstrate the reversibility of translational dysregulation in DYT1 neurons and confirm the presence of abnormal dopaminergic neurotransmission in DYT1 dystonia.


Assuntos
Fator de Iniciação 2 em Eucariotos/metabolismo , Chaperonas Moleculares/metabolismo , eIF-2 Quinase/metabolismo , Animais , Corpo Estriado/metabolismo , Distonia/genética , Distonia/terapia , Distonia Muscular Deformante/genética , Distonia Muscular Deformante/metabolismo , Retículo Endoplasmático/metabolismo , Fator de Iniciação 2 em Eucariotos/fisiologia , Feminino , Humanos , Interneurônios/metabolismo , Masculino , Chaperonas Moleculares/genética , Mutação , Neurônios/metabolismo , Interferência de RNA/fisiologia , Ratos , Ratos Sprague-Dawley , Ratos Transgênicos , Transdução de Sinais/genética , eIF-2 Quinase/fisiologia
6.
Neuroscience ; 422: 1-11, 2019 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-31669362

RESUMO

Dystonia is a disabling neurological syndrome characterized by abnormal movements and postures that result from intermittent or sustained involuntary muscle contractions; mutations of DYT1/TOR1A are the most common cause of childhood-onset, generalized, inherited dystonia. Patient and mouse model data strongly support dysregulation of the nigrostriatal dopamine neurotransmission circuit in the presence of the DYT1-causing mutation. To determine striatal medium spiny neuron (MSN) cell-autonomous and non-cell autonomous effects relevant to dopamine transmission, we created a transgenic mouse in which expression of mutant torsinA in forebrain is restricted to MSNs. We assayed electrically evoked and cocaine-enhanced dopamine release and locomotor activity, dopamine uptake, gene expression of dopamine-associated neuropeptides and receptors, and response to the muscarinic cholinergic antagonist, trihexyphenidyl. We found that over-expression of mutant torsinA in MSNs produces complex cell-autonomous and non-cell autonomous alterations in nigrostriatal dopaminergic and intrastriatal cholinergic function, similar to that found in pan-cellular DYT1 mouse models. These data introduce targets for future studies to identify which are causative and which are compensatory in DYT1 dystonia, and thereby aid in defining appropriate therapies.


Assuntos
Corpo Estriado/metabolismo , Modelos Animais de Doenças , Chaperonas Moleculares/biossíntese , Chaperonas Moleculares/fisiologia , Destreza Motora/fisiologia , Substância Negra/metabolismo , Animais , Cocaína/farmacologia , Dopamina/metabolismo , Distonia/genética , Distonia/metabolismo , Estimulação Elétrica , Feminino , Expressão Gênica/efeitos dos fármacos , Masculino , Camundongos , Camundongos Transgênicos , Chaperonas Moleculares/genética , Mutação , Vias Neurais/metabolismo , Neurônios/metabolismo , Triexifenidil/antagonistas & inibidores , Triexifenidil/farmacologia
7.
Neuroscience ; 371: 455-468, 2018 02 10.
Artigo em Inglês | MEDLINE | ID: mdl-29289717

RESUMO

DYT1 dystonia is a neurological disease caused by dominant mutations in the TOR1A gene, encoding for the endoplasmic reticulum (ER)-resident protein torsinA. Recent reports linked expression of the DYT1-causing protein with dysregulation of eIF2α, a key component of the cellular response to ER stress known as the unfolded protein response (UPR). However, the response of the DYT1 mammalian brain to acute ER stress inducers has not been evaluated in vivo. We hypothesized that torsinA regulates the neuronal UPR and expression of its mutant form would alter this process. TorsinA was post-transcriptionally upregulated upon acute ER stress in different models, suggesting a role in this response. Moreover, increased basal phosphorylation of eIF2α in DYT1 transgenic rats was associated with an abnormal response to acute ER stress. Finally, an unbiased RNA-Seq-based transcriptomic analysis of embryonic brain tissue in heterozygous and homozygous DYT1 knockin mice confirmed the presence of eIF2α dysregulation in the DYT1 brain. In sum, these findings support previous reports linking torsinA function, eIF2α signaling and the neuronal response to ER stress in vivo. Furthermore, we describe novel protocols to investigate neuronal ER stress in cultured neurons and in vivo.


Assuntos
Encéfalo/metabolismo , Distonia Muscular Deformante/metabolismo , Estresse do Retículo Endoplasmático/fisiologia , Fator de Iniciação 2 em Eucariotos/metabolismo , Animais , Encéfalo/efeitos dos fármacos , Encéfalo/embriologia , Encéfalo/patologia , Fármacos do Sistema Nervoso Central/farmacologia , Relação Dose-Resposta a Droga , Estresse do Retículo Endoplasmático/efeitos dos fármacos , Feminino , Humanos , Células-Tronco Pluripotentes Induzidas/efeitos dos fármacos , Células-Tronco Pluripotentes Induzidas/metabolismo , Masculino , Camundongos Transgênicos , Ratos Sprague-Dawley , Ratos Transgênicos , Transcriptoma , Tunicamicina/farmacologia , Resposta a Proteínas não Dobradas/efeitos dos fármacos , Resposta a Proteínas não Dobradas/fisiologia , Regulação para Cima
8.
Methods Mol Biol ; 941: 9-18, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-23065550

RESUMO

In vivo overproduction of tRNA chimeras yields an RNA insert within a tRNA scaffold. For some applications, it may be necessary to discard the scaffold. Here we present a protocol for selective cleavage of the RNA of interest from the tRNA scaffold, using RNase H and two DNA oligonucleotides. After cleavage, we show that the RNA of interest can be isolated in a one-step purification. This method has, in particular, applications in structural investigations of RNA.


Assuntos
Clivagem do RNA , RNA Ribossômico 16S/metabolismo , RNA de Transferência/metabolismo , Ribonuclease H/metabolismo , Eletroforese em Gel de Poliacrilamida , RNA Ribossômico 16S/isolamento & purificação , Ribonuclease H/biossíntese , Ribonuclease H/isolamento & purificação , Coloração e Rotulagem
9.
Artigo em Inglês | MEDLINE | ID: mdl-36147517

RESUMO

The present study investigated whether chronic methamphetamine (METH) would suppress METH-induced mRNA expression of immediate early genes (IEGs) in the rat brain. Rats were given METH or saline over two weeks. After an overnight withdrawal, saline- and METH-pretreated rats received an acute saline or METH challenge. The acute METH challenge increased expression of members of activator protein 1 (AP-1) and Nr4a IEG families in the nucleus accumbens (NAc) and midbrain of saline-pretreated rats. Chronic METH exposure attenuated the effects of acute METH challenge on AP-1 IEG expression in the NAc. However, chronic METH failed to attenuate acute METH-induced increases of Nr4a1 and Nr4a3 expression in the NAc. In contrast to observations in the NAc, chronic METH did not prevent acute METH-induced changes in IEG expression in the midbrain. These results suggest that these two brain regions that are implicated in neuroplastic effects of illicit substances might be differentially affected by psychostimulants.

10.
PLoS One ; 6(12): e28946, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-22174933

RESUMO

Single large doses of methamphetamine (METH) cause endoplasmic reticulum (ER) stress and mitochondrial dysfunctions in rodent striata. The dopamine D(1) receptor appears to be involved in these METH-mediated stresses. The purpose of this study was to investigate if dopamine D(1) and D(2) receptors are involved in ER and mitochondrial stresses caused by single-day METH binges in the rat striatum. Male Sprague-Dawley rats received 4 injections of 10 mg/kg of METH alone or in combination with a putative D(1) or D(2) receptor antagonist, SCH23390 or raclopride, respectively, given 30 min prior to each METH injection. Rats were euthanized at various timepoints afterwards. Striatal tissues were used in quantitative RT-PCR and western blot analyses. We found that binge METH injections caused increased expression of the pro-survival genes, BiP/GRP-78 and P58(IPK), in a SCH23390-sensitive manner. METH also caused up-regulation of ER-stress genes, Atf2, Atf3, Atf4, CHOP/Gadd153 and Gadd34. The expression of heat shock proteins (HSPs) was increased after METH injections. SCH23390 completely blocked induction in all analyzed ER stress-related proteins that included ATF3, ATF4, CHOP/Gadd153, HSPs and caspase-12. The dopamine D(2)-like antagonist, raclopride, exerted small to moderate inhibitory influence on some METH-induced changes in ER stress proteins. Importantly, METH caused decreases in the mitochondrial anti-apoptotic protein, Bcl-2, but increases in the pro-apoptotic proteins, Bax, Bad and cytochrome c, in a SCH23390-sensitive fashion. In contrast, raclopride provided only small inhibition of METH-induced changes in mitochondrial proteins. These findings indicate that METH-induced activation of striatal ER and mitochondrial stress pathways might be more related to activation of SCH23390-sensitive receptors.


Assuntos
Estresse do Retículo Endoplasmático/efeitos dos fármacos , Metanfetamina/farmacologia , Mitocôndrias/metabolismo , Receptores de Dopamina D1/metabolismo , Receptores de Dopamina D2/metabolismo , Estresse Fisiológico/efeitos dos fármacos , Animais , Benzazepinas/farmacologia , Biomarcadores/metabolismo , Chaperona BiP do Retículo Endoplasmático , Estresse do Retículo Endoplasmático/genética , Febre/metabolismo , Febre/patologia , Proteínas de Choque Térmico HSP40/metabolismo , Proteínas de Choque Térmico HSP70/metabolismo , Proteínas de Choque Térmico/metabolismo , Masculino , Metanfetamina/administração & dosagem , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/genética , Neostriado/efeitos dos fármacos , Neostriado/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Racloprida/farmacologia , Ratos , Ratos Sprague-Dawley , Estresse Fisiológico/genética , Fatores de Tempo , Regulação para Cima/efeitos dos fármacos
11.
Dose Response ; 9(2): 165-81, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-21731535

RESUMO

Methamphetamine (METH) is a toxic drug of abuse, which can cause significant decreases in the levels of monoamines in various brain regions. However, animals treated with progressively increasing doses of METH over several weeks are protected against the toxic effects of the drug. In the present study, we tested the possibility that this pattern of METH injections might be associated with transcriptional changes in the rat striatum, an area of the brain which is known to be very sensitive to METH toxicity and which is protected by METH preconditioning. We found that the presence and absence of preconditioning followed by injection of large doses of METH caused differential expression in different sets of striatal genes. Quantitative PCR confirmed METH-induced changes in some genes of interest. These include small heat shock 27 kD proteins 1 and 2 (HspB1 and HspB2), brain derived neurotrophic factor (BDNF), and heme oxygenase-1 (Hmox-1). Our observations are consistent with previous studies which have reported that ischemic or pharmacological preconditioning can cause reprogramming of gene expression after lethal ischemic insults. These studies add to the growing literature on the effects of preconditioning on the brain transcriptome.

12.
Psychopharmacology (Berl) ; 215(2): 353-65, 2011 May.
Artigo em Inglês | MEDLINE | ID: mdl-21229349

RESUMO

RATIONALE: Repeated injections of cocaine cause blunted responses to acute cocaine challenge-induced increases in the expression of immediate early genes (IEGs). OBJECTIVES: The aim of this study was to test if chronic methamphetamine (METH) exposure might cause similar blunting of acute METH-induced increases in IEG expression. RESULTS: Repeated saline or METH injections were given to rats over 14 days. After 1 day of withdrawal, they received a single injection of saline or METH (5 mg/kg). Acute injection of METH increased c-fos, fosB, fra2, junB, Egr1-3, Nr4a1 (Nur77), and Nr4a3 (Nor-1) mRNA levels in the striatum of saline-pretreated rats. Chronic METH treatment alone reduced the expression of AP1, Erg1-3, and Nr4a1 transcription factors below control levels. Acute METH challenge normalized these values in METH-pretreated rats. Unexpectedly, acute METH challenge to METH-pretreated animals caused further decreases in Nr4a2 (Nurr1) mRNA levels. In contrast, the METH challenge caused significant but blunted increases in Nr4a3 and Arc expression in METH-pretreated rats. There were also chronic METH-associated decreases in the expression of cAMP responsive element binding protein (CREB) which modulates IEG expression via activation of the cAMP/PKA/CREB signal transduction pathway. Chronic METH exposure also caused significant decreases in preprotachykinin, but not in prodynorphin, mRNA levels. CONCLUSIONS: These results support the accumulated evidence that chronic administration of psychostimulants is associated with blunting of their acute stimulatory effects on IEG expression. The METH-induced renormalization of the expression of several IEGs in rats chronically exposed to METH hints to a potential molecular explanation for the recurrent self-administration of the drug by human addicts.


Assuntos
Estimulantes do Sistema Nervoso Central/administração & dosagem , Corpo Estriado/efeitos dos fármacos , Corpo Estriado/metabolismo , Regulação da Expressão Gênica/efeitos dos fármacos , Proteínas Imediatamente Precoces/metabolismo , Metanfetamina/administração & dosagem , Análise de Variância , Animais , Proteína de Ligação a CREB/genética , Proteína de Ligação a CREB/metabolismo , Proteínas do Citoesqueleto/genética , Proteínas do Citoesqueleto/metabolismo , Relação Dose-Resposta a Droga , Esquema de Medicação , Proteínas Imediatamente Precoces/classificação , Proteínas Imediatamente Precoces/genética , Masculino , Proteínas do Tecido Nervoso/genética , Proteínas do Tecido Nervoso/metabolismo , RNA Mensageiro/metabolismo , Ratos , Ratos Sprague-Dawley
13.
Brain Res ; 1318: 1-10, 2010 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-20059987

RESUMO

Methamphetamine (METH) is a psychostimulant that can cause long-lasting neurodegenerative effects in humans and animals. These toxic effects appear to occur, in part, via activation of dopamine (DA) D1 receptors. This paper assessed the possibility that the DA D1 receptor antagonist, SCH23390, might inhibit METH-induced changes in the expression of several members of immediate early genes (IEGs) which are known to control more delayed expression of other genes. We found that injections of METH (4x10 mg/kg, given at 2 h intervals) caused significant increases in c-fos and fra-2 expression which lasted from 30 min to 4 h. Pre-treatment with SCH23390, given 30 min before each METH injection, completely blocked METH-induced expression of c-fos, but only partially inhibited fra-2 mRNA expression. These results were confirmed by Western blot analysis which showed METH-induced changes in c-Fos protein expression that were blocked by pretreatment with SCH23390. There were also delayed METH-induced DA D1 receptor-dependent effects on fosB mRNA expression. Even though fra-1 expression was not affected by pretreatment with METH alone, the repeated injections of SCH23390 caused substantial decreases in fra-1 mRNA expression in both the presence and absence of METH. The repeated injections of METH caused no changes in the mRNAs for c-jun, junB or junD. However, there were significant increases in the phosphorylation of c-Jun protein (ser63). Phosphorylation of c-Jun occurred in a delayed fashion (16 and 24 h after the last METH injections) and was attenuated by SCH23390 pretreatment. Interestingly, SCH23390 given alone caused significant decreases in phospho-c-Jun at all time-points. The METH injections also caused delayed induction in the expression of members of the Egr family of transcription factors in a DA D1 receptor-dependent fashion. Repeated injections of SCH23390 caused substantial suppression of basal striatal egr-1 and egr-2 mRNA expression but not of that of egr-3. Both crem and arc mRNA levels were induced by METH in a SCH23390-sensitive fashion. Moreover, multiple injections of SCH23390 given alone caused marked inhibition of basal arc expression. These results show that multiple injections of METH can differentially affect the expression of several IEGs, some of which occurred in a DA D1 receptor dependent fashion. The SCH23390-mediated suppression of basal fra-1, egr-1, and egr-2 mRNA levels suggests that their basal expression in the striatum might be dependent on tonic stimulation of the DA D1 receptor.


Assuntos
Benzazepinas/farmacologia , Estimulantes do Sistema Nervoso Central/farmacologia , Corpo Estriado/efeitos dos fármacos , Antagonistas de Dopamina/farmacologia , Genes Precoces/efeitos dos fármacos , Metanfetamina/farmacologia , Animais , Corpo Estriado/metabolismo , Modulador de Elemento de Resposta do AMP Cíclico/metabolismo , Proteínas do Citoesqueleto/metabolismo , Fatores de Transcrição de Resposta de Crescimento Precoce/metabolismo , Antígeno 2 Relacionado a Fos/metabolismo , Proteínas Quinases JNK Ativadas por Mitógeno/metabolismo , Masculino , Proteínas do Tecido Nervoso/metabolismo , Fosforilação/efeitos dos fármacos , Proteínas Proto-Oncogênicas c-fos/metabolismo , RNA Mensageiro/metabolismo , Ratos , Ratos Sprague-Dawley , Receptores de Dopamina D1/antagonistas & inibidores , Receptores de Dopamina D1/metabolismo
14.
CNS Neurol Disord Drug Targets ; 9(5): 526-38, 2010 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-20632973

RESUMO

Dopamine (DA), the most abundant catecholamine in the basal ganglia, participates in the regulation of motor functions and of cognitive processes such as learning and memory. Abnormalities in dopaminergic systems are thought to be the bases for some neuropsychiatric disorders including addiction, Parkinson's disease, and Schizophrenia. DA exerts its arrays of functions via stimulation of D1-like (D1 and D5) and D2-like (D2, D3, and D4) DA receptors which are located in various regions of the brain. The DA D1 and D2 receptors are very abundant in the basal ganglia where they exert their functions within separate neuronal cell types. The present paper focuses on a review of the effects of stimulation of DA D1 receptors on diverse signal transduction pathways and gene expression patterns in the brain. We also discuss the possible involvement of the DA D1 receptors in DA-mediated toxic effects observed both in vitro and in vivo. Future studies using more selective agonist and antagonist agents and the use of genetically modified animals should help to further clarify the role of these receptors in the normal physiology and in pathological events that involve DA.


Assuntos
Encéfalo/metabolismo , Regulação da Expressão Gênica/efeitos dos fármacos , Degeneração Neural/induzido quimicamente , Receptores de Dopamina D1/fisiologia , Animais , Dopamina/efeitos adversos , Dopamina/genética , Dopamina/metabolismo , Dopamina/fisiologia , Dopaminérgicos/farmacologia , Humanos , Fatores de Crescimento Neural/metabolismo , Neuropeptídeos/metabolismo , Receptores de Dopamina D1/agonistas , Receptores de Dopamina D1/antagonistas & inibidores , Receptores de Dopamina D1/metabolismo , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/fisiologia , Fatores de Transcrição/efeitos dos fármacos , Fatores de Transcrição/metabolismo
15.
Nat Protoc ; 4(6): 947-59, 2009.
Artigo em Inglês | MEDLINE | ID: mdl-19478810

RESUMO

RNA production using in vivo transcription by Escherichia coli allows preparation of milligram quantities of RNA for biochemical, biophysical and structural investigations. We describe here a generic protocol for the overproduction and purification of recombinant RNA using liquid chromatography. The strategy utilizes a transfer RNA (tRNA) as a scaffold that can be removed from the RNA of interest by digestion of the fusion RNA at a designed site by RNase H. The tRNA scaffold serves to enhance the stability and to promote the proper expression of its fusion partners. This protocol describes how to construct a tRNA fusion RNA expression vector; to conduct a pilot experiment to assess the yield of the recombinant RNA both before and after processing of the fusion RNA by RNase H; and to purify the target RNA on a large scale for structural or functional studies. This protocol greatly facilitates production of RNA in a time frame of approximately 3 weeks from design to purification. As compared with in vitro methods (transcription, chemical synthesis), this approach is simple, cheap and well suited for large-scale expression and isotope labeling.


Assuntos
Escherichia coli/genética , Técnicas Genéticas , RNA/genética , RNA/isolamento & purificação , Sequência de Bases , Cromatografia Líquida/métodos , Vetores Genéticos , Isótopos , Dados de Sequência Molecular , Plasmídeos/genética , RNA/química , RNA Bacteriano/genética , RNA de Transferência/genética , Ribonuclease H
16.
PLoS One ; 4(6): e6092, 2009 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-19564919

RESUMO

Methamphetamine (METH) is an illicit toxic psychostimulant which is widely abused. Its toxic effects depend on the release of excessive levels of dopamine (DA) that activates striatal DA receptors. Inhibition of DA-mediated neurotransmission by the DA D1 receptor antagonist, SCH23390, protects against METH-induced neuronal apoptosis. The initial purpose of the present study was to investigate, using microarray analyses, the influence of SCH23390 on transcriptional responses in the rat striatum caused by a single METH injection at 2 and 4 hours after drug administration. We identified 545 out of a total of 22,227 genes as METH-responsive. These include genes which are involved in apoptotic pathways, endoplasmic reticulum (ER) stress, and in transcription regulation, among others. Of these, a total of 172 genes showed SCH23390-induced inhibition of METH-mediated changes. Among these SCH23390-responsive genes were several genes that are regulated during ER stress, namely ATF3, HSP27, Hmox1, HSP40, and CHOP/Gadd153. The secondary goal of the study was to investigate the role of DA D1 receptor stimulation on the expression of genes that participate in ER stress-mediated molecular events. We thus used quantitative PCR to confirm changes in the METH-responsive ER genes identified by the microarray analyses. We also measured the expression of these genes and of ATF4, ATF6, BiP/GRP78, and of GADD34 over a more extended time course. SCH23390 attenuated or blocked METH-induced increases in the expression of the majority of these genes. Western blot analysis revealed METH-induced increases in the expression of the antioxidant protein, Hmox1, which lasted for about 24 hours after the METH injection. Additionally, METH caused DA D1 receptor-dependent transit of the Hmox1 regulator protein, Nrf2, from cytosolic into nuclear fractions where the protein exerts its regulatory functions. When taken together, these findings indicate that SCH23390 can provide protection against neuronal apoptosis by inhibiting METH-mediated DA D1 receptor-mediated ER stress in the rat striatum. Our data also suggest that METH-induced toxicity might be a useful model to dissect molecular mechanisms involved in ER stress-dependent events in the rodent brain.


Assuntos
Corpo Estriado/efeitos dos fármacos , Retículo Endoplasmático/efeitos dos fármacos , Metanfetamina/farmacologia , Receptores de Dopamina D1/metabolismo , Animais , Apoptose , Benzazepinas/farmacologia , Dopaminérgicos/farmacologia , Chaperona BiP do Retículo Endoplasmático , Masculino , Modelos Biológicos , Neurônios/patologia , Análise de Sequência com Séries de Oligonucleotídeos , Ratos , Ratos Sprague-Dawley , Transmissão Sináptica/efeitos dos fármacos
17.
PLoS One ; 4(11): e7812, 2009 Nov 12.
Artigo em Inglês | MEDLINE | ID: mdl-19915665

RESUMO

Methamphetamine (METH) is an illicit drug which is neurotoxic to the mammalian brain. Numerous studies have revealed significant decreases in dopamine and serotonin levels in the brains of animals exposed to moderate-to-large METH doses given within short intervals of time. In contrast, repeated injections of small nontoxic doses of the drug followed by a challenge with toxic METH doses afford significant protection against monoamine depletion. The present study was undertaken to test the possibility that repeated injections of the drug might be accompanied by transcriptional changes involved in rendering the nigrostriatal dopaminergic system refractory to METH toxicity. Our results confirm that METH preconditioning can provide significant protection against METH-induced striatal dopamine depletion. In addition, the presence and absence of METH preconditioning were associated with substantial differences in the identity of the genes whose expression was affected by a toxic METH challenge. Quantitative PCR confirmed METH-induced changes in genes of interest and identified additional genes that were differentially impacted by the toxic METH challenge in the presence of METH preconditioning. These genes include small heat shock 27 kD 27 protein 2 (HspB2), thyrotropin-releasing hormone (TRH), brain derived neurotrophic factor (BDNF), c-fos, and some encoding antioxidant proteins including CuZn superoxide dismutase (CuZnSOD), glutathione peroxidase (GPx)-1, and heme oxygenase-1 (Hmox-1). These observations are consistent, in part, with the transcriptional alterations reported in models of lethal ischemic injuries which are preceded by ischemic or pharmacological preconditioning. Our findings suggest that multiple molecular pathways might work in tandem to protect the nigrostriatal dopaminergic pathway against the deleterious effects of the toxic psychostimulant. Further analysis of the molecular and cellular pathways regulated by these genes should help to provide some insight into the neuroadaptive potentials of the brain when repeatedly exposed to drugs of abuse.


Assuntos
Lesões Encefálicas/patologia , Mesencéfalo/efeitos dos fármacos , Metanfetamina/farmacologia , Animais , Estimulantes do Sistema Nervoso Central/farmacologia , Cromatografia Líquida de Alta Pressão/métodos , Dopamina/metabolismo , Perfilação da Expressão Gênica , Regulação da Expressão Gênica , Masculino , Análise de Sequência com Séries de Oligonucleotídeos , Ratos , Ratos Sprague-Dawley , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Serotonina/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA