Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 37
Filtrar
1.
J Assist Reprod Genet ; 39(4): 793-800, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-35212880

RESUMO

The age-associated decline in female fertility is largely ascribable to a decrease in oocyte quality. This phenomenon is multifaceted and influenced by numerous interconnected maternal and environmental factors. An increase in the rate of meiotic errors is the major cause of the decline in oocyte developmental competence. However, abnormalities in the ooplasm accumulating with age - including altered metabolism, organelle dysfunction, and aberrant gene regulation - progressively undermine oocyte quality. Stockpiling of maternal macromolecules during folliculogenesis is crucial, as oocyte competence to achieve maturation, fertilization, and the earliest phases of embryo development occur in absence of transcription. At the same time, crucial remodeling of oocyte epigenetics during oogenesis is potentially exposed to interfering factors, such as assisted reproduction technologies (ARTs) or environmental changes, whose impact may be enhanced by reproductive aging. As the effects of maternal aging on molecular mechanisms governing the function of the human oocyte remain poorly understood, studies in animal models are essential to deepen current understanding, with translational implications for human ARTs. The present mini review aims at offering an updated and consistent view of cytoplasmic alterations occurring in oocytes during aging, focusing particularly on gene and epigenetic regulation. Appreciation of these mechanisms could inspire solutions to mitigate/control the phenomenon, and thus benefit modern ARTs.


Assuntos
Segregação de Cromossomos , Epigênese Genética , Animais , Segregação de Cromossomos/genética , Desenvolvimento Embrionário , Feminino , Humanos , Oócitos , Oogênese/genética
2.
Mol Hum Reprod ; 27(7)2021 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-34191027

RESUMO

Since its recent discovery, the subcortical maternal complex (SCMC) is emerging as a maternally inherited and crucial biological structure for the initial stages of embryogenesis in mammals. Uniquely expressed in oocytes and preimplantation embryos, where it localizes to the cell subcortex, this multiprotein complex is essential for early embryo development in the mouse and is functionally conserved across mammalian species, including humans. The complex has been linked to key processes leading the transition from oocyte to embryo, including meiotic spindle formation and positioning, regulation of translation, organelle redistribution, and epigenetic reprogramming. Yet, the underlying molecular mechanisms for these diverse functions are just beginning to be understood, hindered by unresolved interplay of SCMC components and variations in early lethal phenotypes. Here we review recent advances confirming involvement of the SCMC in human infertility, revealing an unexpected relationship with offspring health. Moreover, SCMC organization is being further revealed in terms of novel components and interactions with additional cell constituents. Collectively, this evidence prompts new avenues of investigation into possible roles during the process of oogenesis and the regulation of maternal transcript turnover during the oocyte to embryo transition.


Assuntos
Blastocisto/ultraestrutura , Desenvolvimento Embrionário , Complexos Multiproteicos/fisiologia , Oócitos/ultraestrutura , Aneuploidia , Animais , Blastocisto/metabolismo , Anormalidades Congênitas , Proteínas do Ovo/fisiologia , Impressão Genômica , Humanos , Infertilidade/genética , Camundongos , Complexos Multiproteicos/ultraestrutura , Mutação , Oócitos/metabolismo , Estabilidade de RNA , RNA Mensageiro/metabolismo
3.
J Assist Reprod Genet ; 36(10): 2145-2154, 2019 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-31414315

RESUMO

PURPOSE: Testicular tissue cryopreservation prior to gonadotoxic therapies is a method to preserve fertility in children. However, the technique still requires development, especially when the tissue is immature and rather susceptible to stress derived from in vitro manipulation. This study aimed to investigate the effects of vitrification with a new cryodevice (E.Vit) on cell membrane integrity and gene expression of prepubertal testicular tissue in the ovine model. METHODS: Pieces of immature testicular tissue (1 mm3) were inserted into "E.Vit" devices and vitrified with a two-step protocol. After warming, tissues were cultured in vitro and cell membrane integrity was assessed after 0, 2, and 24 h by trypan blue exclusion test. Controls consisted of non-vitrified tissue analyzed after 0, 2, and 24 h in vitro culture (IVC). Expression of genes involved in transcriptional stress response (BAX, SOD1, CIRBP, HSP90AB1), cell proliferation (KIF11), and germ- (ZBDB16, TERT, POU5F1, KIT) and somatic- (AR, FSHR, STAR) cell specific markers was evaluated 2 and 24 h after warming. RESULTS: Post-warming trypan blue staining showed the survival of most cells, although membrane integrity immediately after warming (66.00% ± 4.73) or after 2 h IVC (59.67% ± 4.18) was significantly lower than controls (C0h 89.67% ± 1.45). Extended post-warming IVC (24 h) caused an additional decrease to 31% ± 3.46 (P < 0.05). Germ- and somatic-cell specific markers showed the survival of both cell types after cryopreservation and IVC. All genes were affected by cryopreservation and/or IVC, and moderate stress conditions were indicated by transcriptional stress response. CONCLUSIONS: Vitrification with the cryodevice E.Vit is a promising strategy to cryopreserve prepubertal testicular tissue.


Assuntos
Criopreservação/métodos , Folículo Ovariano/metabolismo , Testículo/metabolismo , Vitrificação , Animais , Apoptose/genética , Proliferação de Células/genética , Feminino , Regulação da Expressão Gênica/genética , Humanos , Masculino , Folículo Ovariano/crescimento & desenvolvimento , Ovinos/genética , Ovinos/fisiologia , Testículo/crescimento & desenvolvimento , Vitamina E/genética
4.
Mol Reprod Dev ; 85(5): 427-439, 2018 05.
Artigo em Inglês | MEDLINE | ID: mdl-29542856

RESUMO

Oocytes from prepubertal animals have a reduced ability to undergo embryo development and produce viable offspring. The present work used an ovine model consisting of oocytes derived from adult and prepubertal donors to assess the molecular status of oocytes and preimplantation embryos with different developmental competence. The lower potential of oocytes of young donors was confirmed in terms of in vitro developmental capabilities and kinetics. A panel of genes including maternal effect (DPPA3, GDF9, NMP2, ZAR1) and housekeeping genes (ACTB, RPL19, SDHA, YWHAZ, ATP1A1), genes involved in DNA methylation (DNMT1, DNMT3A, DNMT3B), genomic imprinting (IGF2R), pluripotency (NANOG, POU5F1) and cell cycle regulation (CCNB1, CDK1, MELK) was relatively quantified. Temporal analysis during oocyte maturation and preimplantation embryo development evidenced patterns associated with donor age. With a few gene-specific exceptions, the differential model showed a reduced transcript abundance in immature prepubertal oocytes that completely reversed trend after fertilization, when higher mRNA levels were consistently observed in early embryos, indicating a delay in maternal transcript degradation. We propose that the molecular shortage in the prepubertal oocyte may affect its developmental potential and impair the early pathways of maternal mRNA clearance in the embryo. While confirming the different potential of oocytes derived from adult and prepubertal donors, our work showed for the first time a consistent delay in maternal transcript degradation in embryos derived from low competence oocytes that interestingly recalls the delayed developmental kinetics. Such abnormal transcript persistence may hinder further development and represents a novel perspective on the complexity of developmental competence.


Assuntos
Blastocisto/metabolismo , Metilação de DNA , Desenvolvimento Embrionário , Regulação da Expressão Gênica no Desenvolvimento , Impressão Genômica , Oócitos/metabolismo , Animais , DNA (Citosina-5-)-Metiltransferases/metabolismo , Feminino , Gravidez , Ovinos , DNA Metiltransferase 3B
5.
Mol Reprod Dev ; 85(5): 406-416, 2018 05.
Artigo em Inglês | MEDLINE | ID: mdl-29542837

RESUMO

Maternal nutrition during critical gestation periods impacts on offspring in later life; effects of high-starch maternal diet on testicular development in lambs were addressed. Dairy ewes were fed diets providing either 27% (Starch, S) or 11% (Fiber, F) of starch from mating to lambing (∼147 days; S147, F147) or for the last 75 days of gestation (S75, F75). Testes of single male lambs were measured and then sampled for histological and gene expression analyses at selected ages. Testicular dimensions and weight were similar among groups, but the total area of seminiferous tubules increased with age and tended to be higher (p = 0.057) in lambs from starch- than fiber-fed ewes. Sertoli and germ cells number increased with age, but was not influenced by maternal diet. Transcript abundances of androgen receptor (AR), insulin-like growth factor 1 (IGF1), and hydroxysteroid (17-beta) dehydrogenase 3 (HSD17B3) was similar between S147 and F147 lambs (p > 0.1). Abundance of luteinizing hormone/choriogonadotropin receptor (LHCGR) and steroidogenic acute regulatory protein (STAR) was higher in young vs older lambs, whereas insulin-like growth factor 2 (IGF2) levels increased with age. The expression of vascular endothelial growth factor A (VEGFA), Anti-Müllerian hormone (AMH), IGF1, follicle stimulating hormone receptor (FSHR), and insulin-like growth factor 2 receptor (IGF2R) was not influenced by maternal diet or lamb age (p > 0.1). In conclusion, a high-starch maternal diet did not influence gene expression, but may have affected testicular structure in infant offspring, as seen by an increase in the total area of seminiferous tubules.


Assuntos
Ração Animal , Regulação da Expressão Gênica/efeitos dos fármacos , Efeitos Tardios da Exposição Pré-Natal/metabolismo , Túbulos Seminíferos/crescimento & desenvolvimento , Células de Sertoli/metabolismo , Ovinos/crescimento & desenvolvimento , Amido/farmacologia , Animais , Feminino , Masculino , Gravidez
6.
Reprod Biol Endocrinol ; 16(1): 76, 2018 Aug 10.
Artigo em Inglês | MEDLINE | ID: mdl-30097048

RESUMO

BACKGROUND: Storage conditions during transportation of explanted ovaries are a critical step in setting up fertility preservation protocols in both animal and human fields. Here, we evaluated the effects of ovary storage at 4 °C on the preservation of preantral follicles and oocytes retrieved from antral follicles using the domestic cat as model. METHODS: Ovaries were harvested from fifty-five healthy domestic queens during ovariectomy and stored at 4 °C for 0 (control), 24, 48, 72 and 96 h. In Experiment 1, the effects of the storage period at 4 °C on the morphology, cytoskeleton (α/ß tubulin) and DNA integrity (phosphorylation of histone H2AX) of preantral follicles were investigated. In Experiment 2, oocytes recovered from antral follicles were matured and fertilized in vitro to evaluate their meiotic and developmental competence. Reactive oxygen species (ROS), glutathione (GSH) and lipid peroxidation were measured in matured oocytes. RESULTS: The results showed that: a) storage up to 24 h did not affect the morphology and the DNA integrity of preantral follicles; b) extended storage times caused progressive morphological abnormalities, disassembling of microtubules and DNA damage; c) storage up to 48 h did not influence in vitro meiotic maturation of oocytes nor cleavage after in vitro fertilization. However, only oocytes stored within the ovary for 24 h produced blastocysts in a percentage similar to control oocytes; d) GSH levels of in vitro matured oocytes did not change at any time during ovary storage; a progressive increase in ROS levels was detected from 48 h associated with elevated lipid peroxidation at 72 and 96 h of storage. CONCLUSIONS: Storage of cat ovaries for up to 24 h caused minimal alteration of preantral follicles and oocytes. The extension of the storage period beyond 24 h progressively impaired the structure of follicles, and modified the oxidative status of in vitro matured oocytes and their developmental competence after in vitro fertilization. This information may help when setting up programs for fertility conservation, especially for wild feline species which die in geographic areas located far away from ARTs centers.


Assuntos
Criopreservação/veterinária , Fertilização in vitro/veterinária , Técnicas de Maturação in Vitro de Oócitos/veterinária , Folículo Ovariano/citologia , Animais , Gatos , Criopreservação/métodos , Feminino , Preservação da Fertilidade/métodos , Preservação da Fertilidade/veterinária , Fertilização in vitro/métodos , Humanos , Técnicas de Maturação in Vitro de Oócitos/métodos , Modelos Animais , Oócitos/citologia , Oócitos/metabolismo , Folículo Ovariano/metabolismo , Oxirredução
7.
Reproduction ; 153(5): 605-619, 2017 05.
Artigo em Inglês | MEDLINE | ID: mdl-28250235

RESUMO

Genome-wide DNA methylation reprogramming occurs during mammalian gametogenesis and early embryogenesis. Post-fertilization demethylation of paternal and maternal genomes is considered to occur by an active and passive mechanism respectively, in most mammals but sheep; in this species no loss of methylation was observed in either pronucleus. Post-fertilization reprogramming relies on methylating and demethylating enzymes and co-factors that are stored during oocyte growth, concurrently with the re-methylation of the oocyte itself. The crucial remodelling of the oocyte epigenetic baggage often overlaps with potential interfering events such as exposure to assisted reproduction technologies or environmental changes. Here, we report a temporal analysis of methylation dynamics during folliculogenesis and early embryo development in sheep. We characterized global DNA methylation and hydroxymethylation by immunofluorescence and relatively quantified the expression of the enzymes and co-factors mainly responsible for their remodelling (DNA methyltransferases (DNMTs), ten-eleven translocation (TET) proteins and methyl-CpG-binding domain (MBD) proteins). Our results illustrate for the first time the patterns of hydroxymethylation during oocyte growth. We observed different patterns of methylation and hydroxymethylation between the two parental pronuclei, suggesting that male pronucleus undergoes active demethylation also in sheep. Finally, we describe gene-specific accumulation dynamics for methylating and demethylating enzymes during oocyte growth and observe patterns of expression associated with developmental competence in a differential model of oocyte potential. Our work contributes to the understanding of the methylation dynamics during folliculogenesis and early embryo development and improves the overall picture of early rearrangements that will originate the embryo epigenome.


Assuntos
Metilação de DNA , Embrião de Mamíferos/fisiologia , Desenvolvimento Embrionário/genética , Fertilização/genética , Regulação da Expressão Gênica no Desenvolvimento , Folículo Ovariano/fisiologia , Animais , Núcleo Celular , Embrião de Mamíferos/citologia , Feminino , Folículo Ovariano/citologia , Ovinos
8.
BMC Dev Biol ; 14: 40, 2014 Nov 25.
Artigo em Inglês | MEDLINE | ID: mdl-25420964

RESUMO

BACKGROUND: The sub-cortical maternal complex (SCMC), located in the subcortex of mouse oocytes and preimplantation embryos, is composed of at least four proteins encoded by maternal effect genes: OOEP, NLRP5/MATER, TLE6 and KHDC3/FILIA. The SCMC assembles during oocyte growth and was seen to be essential for murine zygote progression beyond the first embryonic cell divisions; although roles in chromatin reprogramming and embryonic genome activation were hypothesized, the full range of functions of the complex in preimplantation development remains largely unknown. RESULTS: Here we report the expression of the SCMC genes in ovine oocytes and pre-implantation embryos, describing for the first time its expression in a large mammalian species. We report sheep-specific patterns of expression and a relationship with the oocyte developmental potential in terms of delayed degradation of maternal SCMC transcripts in pre-implantation embryos derived from developmentally incompetent oocytes. In addition, by determining OOEP full length cDNA by Rapid Amplification of cDNA Ends (RACE) we identified two different transcript variants (OOEP1 and OOEP2), both expressed in oocytes and early embryos, but with different somatic tissue distributions. In silico translation showed that 140 aminoacid peptide OOEP1 shares an identity with orthologous proteins ranging from 95% with the bovine to 45% with mouse. Conversely, OOEP2 contains a premature termination codon, thus representing an alternative noncoding transcript and supporting the existence of aberrant splicing during ovine oogenesis. CONCLUSIONS: These findings confirm the existence of the SCMC in sheep and its key role for the oocyte developmental potential, deepening our understanding on the molecular differences underlying cytoplasmic vs nuclear maturation of the oocytes. Describing differences and overlaps in transcriptome composition between model organisms advance our comprehension of the diversity/uniformity between mammalian species during early embryonic development and provide information on genes that play important regulatory roles in fertility in nonmurine models, including the human.


Assuntos
Desenvolvimento Embrionário , Regulação da Expressão Gênica no Desenvolvimento , Carneiro Doméstico/metabolismo , Sequência de Aminoácidos , Animais , Sequência de Bases , Blastocisto/metabolismo , Feminino , Fertilidade , Masculino , Dados de Sequência Molecular , Oócitos/metabolismo , Especificidade de Órgãos , Gravidez , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Proteínas de Ligação a RNA/genética , Proteínas de Ligação a RNA/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Transcriptoma
10.
Animals (Basel) ; 13(5)2023 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-36899630

RESUMO

Increased knowledge of the developmental processes during gestation could provide valuable information on potential alterations in embryonic/fetal development. We examined the development of ovine conceptus between the 20th and 70th day of gestation with three convergent analyses: (1) uterus ultrasound examination and measurement (eco) of crown-rump length (CRL) and biparietal diameter (BPD) of the conceptus; (2) direct measurement (vivo) of CRL and BPD of the conceptus outside the uterus (3) osteo-cartilage dynamics during development by differential staining. No significant differences were observed between eco and vivo measurements for CRL and BPD in all examined concepti. CRL and BPD, instead, showed a significant positive linear correlation with gestational age. The study of osteogenesis dynamics has demonstrated a completely cartilaginous ovine fetus at up to 35 days of gestation. The ossification begins in the skull (40th day) and is almost complete between the 65th and the 70th of pregnancy. Our study highlighted that CRL and BPD are accurate parameters for gestational age estimation in the first part of sheep pregnancy and provides an overview of osteochondral temporal dynamics. Furthermore, tibia ossification is a valid parameter to estimate fetal age by ultrasound.

11.
Cryobiology ; 64(3): 267-72, 2012 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-22387147

RESUMO

Cryopreservation-induced modifications of zona pellucida (ZP) have been explored to a lesser extent compared to other oocyte compartments. Different methods have been applied to identify ZP changes, but most of them are invasive and measure only few properties of ZP. Raman microspectroscopy (RMS) is a powerful technique for studying the molecular composition of cells but to date few studies have been performed on the oocytes using this method. The aim of the present study is to investigate the structural modifications of ZP of vitrified/warmed in vitro matured ovine oocytes by means of RMS. Cumulus-oocyte complexes were recovered from the ovaries of slaughtered adult sheep, matured in vitro and vitrified following the Minimum Essential Volume method using cryotops. ZPs of vitrified/warmed oocytes (VITRI), were exposed to vitrification solutions but not cryopreserved (CPA-exp) and untreated oocytes (CTR) were analyzed by RMS. We focused our analysis on the ZP protein and carbohydrate components by analyzing the 1230-1300 cm(-1) amide III region and the 1020-1140 cm(-1) spectral range in RMS spectra, respectively. The spectral profiles in the ranges of proteins and carbohydrates were comparable between CTR and CPA-exp ZPs, whereas VITRI ZPs showed a significantly altered protein secondary structure characterized by an increase in ß-sheet content and a decrease in the α-helix content. A significant modification of the carbohydrate components was also observed. This study demonstrates that vitrification of ovine oocytes induces biochemical changes of ZP related to the secondary structure of proteins and carbohydrate residues. Cryoprotectants do not strongly alter the molecular composition of ZP which is affected mainly by cooling. Raman technology offers a powerful and non-invasive tool to assess molecular modifications induced by cryopreservation in oocytes.


Assuntos
Criopreservação , Oócitos/citologia , Análise Espectral Raman/métodos , Zona Pelúcida , Acetilgalactosamina/química , Animais , Sobrevivência Celular/efeitos dos fármacos , Crioprotetores/farmacologia , Dimetil Sulfóxido/farmacologia , Etilenoglicol/farmacologia , Feminino , Oócitos/efeitos dos fármacos , Estrutura Secundária de Proteína , Proteínas/química , Ovinos , Carneiro Doméstico , Sacarose/farmacologia , Vitrificação , Zona Pelúcida/efeitos dos fármacos
12.
Animals (Basel) ; 12(13)2022 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-35804496

RESUMO

Cryopreservation is a fundamental procedure to preserve the structure and function of cells and tissues by storing them at low temperatures for long periods [...].

13.
Biology (Basel) ; 11(4)2022 Mar 23.
Artigo em Inglês | MEDLINE | ID: mdl-35453692

RESUMO

Glioblastoma is a brain tumour frequently used as an experimental model to exploit innovative therapeutic approaches due to its high lethality and refractoriness to therapies. Part of these innovative anticancer therapies address cytoskeletal microtubules (MTs) since specific tubulin post-translational modifications (PTMs) are considered markers of tumour plasticity. In vitro studies, which traditionally employ two-dimensional (2D) culture systems, are now being replaced by three-dimensional (3D) systems that more closely mimic in vivo physiological conditions and allow a better understanding of the signalling between cells. In this work, we compared 2 liquid base 3D methods for the generation of spheroids from C6 rat glioma cells (RGCs) using 30 µL of liquid marble (LM) or the hanging drops (HDs), which contained 2 different cell numbers (5000 or 15,000). After 24 or 48 h of in vitro culture (IVC), the morphology of the spheroids was observed and the behaviour of the two main tubulin PTMs, tyrosinated α-tubulin (Tyr-T) and acetylated α-tubulin (Ac-T), was evaluated by fluorescence and Western blot (WB). RGCs spontaneously formed spherical agglomerates more rapidly in the LM than in the HD system. Cell density influenced the size of the spheroids, which reached a larger size (> of 300 µm Ø), with 15,000 cells compared to 5000 cells (150 µm Ø). Moreover, an increase in Tyr-T and Ac-T was observed in both the HD and LM system from 24 to 48 h, with the highest values shown in the 48 h/LM spheroids of 5000 cells (p < 0.05). In conclusion, by comparing the morphology and microtubular architecture of spheroids from C6 rat glioma cells developed by LM or HD methodology, our findings demonstrate that the use of a fumed silica microbioreactor boosts the induction and maintenance of a high plasticity state in glioma cells. RGCs cultured in LM express levels of tubulin PTMs that can be used to evaluate the efficacy of new anticancer therapies.

14.
Reprod Fertil Dev ; 23(6): 809-17, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-21791182

RESUMO

Exposure to sub-lethal hydrostatic pressure (HP) treatment is emerging as an approach to improve the general resistance of gametes and embryos to in vitro conditions. The present study was aimed to evaluate the effect of HP treatment on in vitro-produced ovine blastocysts. Experiment 1 was aimed to define optimal treatment parameters: two different HP treatments were applied to blastocysts and embryo survival was evaluated. In Experiment 2, HP parameters (40 MPa, 70 min, 38 °C) selected in Experiment 1 were used to treat blastocysts. Embryo quality was assessed and compared with untreated controls by counting total cell number, the inner cell mass (ICM) and trophectoderm (TE) cells and by evaluating nuclear picnosis. HP-treated blastocysts were processed for gene expression analysis (AQP3, ATP1A1, BAX, CDH1, HSP90ß, NANOG, OCT4 and TP53) 1, 5h after the end of HP exposure. Results showed that the hatching rate of embryos treated at 40 MPa was significantly higher than that of the 60 MPa-treated group (P<0.01) and similar to untreated embryos. Blastocysts exposed at 40 MPa showed higher ICM (P<0.05) and TE (P<0.01) cell number and a lower percentage of picnotic nuclei (P<0.05) compared with the control group. Significantly lower abundance for BAX (P<0.01) and OCT4 (P<0.05) transcripts were observed in HP embryos than in the control group. In conclusion, treatment with HP improved the quality of in vitro-produced ovine blastocysts by increasing their cell number and reducing the proportion of nuclear picnosis.


Assuntos
Blastocisto/fisiologia , Desenvolvimento Embrionário/fisiologia , Fertilização in vitro/métodos , Fertilização in vitro/veterinária , Regulação da Expressão Gênica no Desenvolvimento/fisiologia , Pressão Hidrostática , Ovinos/embriologia , Análise de Variância , Animais , Massa Celular Interna do Blastocisto/citologia , Contagem de Células , Núcleo Celular/fisiologia , Primers do DNA/genética , Reação em Cadeia da Polimerase em Tempo Real , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Análise de Sobrevida
15.
Biology (Basel) ; 10(11)2021 Oct 25.
Artigo em Inglês | MEDLINE | ID: mdl-34827093

RESUMO

In vitro oocyte maturation (IVM) is a well-established technique. Despite the high IVM rates obtained in most mammalian species, the developmental competence of IVM oocytes is suboptimal. The aim of this work was to evaluate the potential beneficial effects of a liquid marble microbioreactor (LM) as a 3D culture system to mature in vitro prepubertal ovine oocytes, as models of oocytes with intrinsic low competence. Cumulus-oocyte complexes of prepubertal sheep ovaries were in vitro matured in a LM system with hydrophobic fumed-silica-nanoparticles (LM group) or in standard conditions (4W control group). We evaluated: (a) maturation and (b) developmental rates following in vitro fertilization (IVF) and embryo culture; (c) expression of a panel of genes. LM and 4W groups showed similar IVM and IVF rates, while in vitro development to blastocyst stage approached significance (4W: 14.1% vs. LM: 28.3%; p = 0.066). The expression of GDF9, of enzymes involved in DNA methylation reprogramming and of the subcortical maternal complex was affected by the IVM system, while no difference was observed in terms of cell-stress-response. LM microbioreactors provide a suitable microenvironment to induce prepubertal sheep oocyte IVM and should be considered to enhance the developmental competence of oocytes with reduced potential also in other species, including humans.

16.
Life (Basel) ; 11(10)2021 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-34685409

RESUMO

Human activities are having increasingly devastating effects on the health of marine and terrestrial ecosystems. Studying the adaptive responses of animal species to changes in their habitat can be useful in mitigating this impact. Vultures represent one of the most virtuous examples of adaptation to human-induced environmental changes. Once dependent on wild ungulate populations, these birds have adapted to the epochal change resulting from the birth of agriculture and livestock domestication, maintaining their essential role as ecological scavengers. In this review, we retrace the main splitting events characterising the vultures' evolution, with particular emphasis on the Eurasian griffon Gyps fulvus. We summarise the main ecological and behavioural traits of this species, highlighting its vulnerability to elements introduced into the habitat by humans. We collected the genetic information available to date, underlining their importance for improving the management of this species, as an essential tool to support restocking practices and to protect the genetic integrity of G. fulvus. Finally, we examine the difficulties in implementing a coordination system that allows genetic information to be effectively transferred into management programs. Until a linking network is established between scientific research and management practices, the risk of losing important wildlife resources remains high.

17.
Animals (Basel) ; 11(12)2021 Nov 29.
Artigo em Inglês | MEDLINE | ID: mdl-34944182

RESUMO

Cryopreservation is routinely used to preserve cells and tissues; however, long time storage brings many inconveniences including the use of liquid nitrogen. Freeze-drying could enable higher shelf-life stability at ambient temperatures and facilitate transport and storage. Currently, the possibility to freeze-dry reproductive tissues maintaining vitality and functions is still under optimization. Here, we lyophilized sheep ovarian tissue with a novel device named Darya and a new vitrification and drying protocol and assessed effects on tissue integrity and gene expression. The evaluation was performed immediately after lyophilization (Lio), after rehydration (LR0h) or after two hours of in vitro culture (IVC; LR2h). The tissue survived lyophilization procedures and maintained its general structure, including intact follicles at different stages of development, however morphological and cytoplasmic modifications were noticed. Lyophilization, rehydration and further IVC increasingly affected RNA integrity and caused progressive morphological alterations. Nevertheless, analysis of a panel of eight genes showed tissue survival and reaction to the different procedures by regulation of specific gene expression. Results show that sheep ovarian tissue can tolerate the applied vitrification and drying protocol and constitute a valid basis for further improvements of the procedures, with the ultimate goal of optimizing tissue viability after rehydration.

18.
Front Cell Dev Biol ; 9: 664099, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34124044

RESUMO

Somatic cell nuclear transfer (SCNT) is a key technology with broad applications that range from production of cloned farm animals to derivation of patient-matched stem cells or production of humanized animal organs for xenotransplantation. However, effects of aberrant epigenetic reprogramming on gene expression compromise cell and organ phenotype, resulting in low success rate of SCNT. Standard SCNT procedures include enucleation of recipient oocytes before the nuclear donor cell is introduced. Enucleation removes not only the spindle apparatus and chromosomes of the oocyte but also the perinuclear, mitochondria rich, ooplasm. Here, we use a Bos taurus SCNT model with in vitro fertilized (IVF) and in vivo conceived controls to demonstrate a ∼50% reduction in mitochondrial DNA (mtDNA) in the liver and skeletal muscle, but not the brain, of SCNT fetuses at day 80 of gestation. In the muscle, we also observed significantly reduced transcript abundances of mtDNA-encoded subunits of the respiratory chain. Importantly, mtDNA content and mtDNA transcript abundances correlate with hepatomegaly and muscle hypertrophy of SCNT fetuses. Expression of selected nuclear-encoded genes pivotal for mtDNA replication was similar to controls, arguing against an indirect epigenetic nuclear reprogramming effect on mtDNA amount. We conclude that mtDNA depletion is a major signature of perturbations after SCNT. We further propose that mitochondrial perturbation in interaction with incomplete nuclear reprogramming drives abnormal epigenetic features and correlated phenotypes, a concept supported by previously reported effects of mtDNA depletion on the epigenome and the pleiotropic phenotypic effects of mtDNA depletion in humans. This provides a novel perspective on the reprogramming process and opens new avenues to improve SCNT protocols for healthy embryo and tissue development.

19.
J Pineal Res ; 46(4): 383-91, 2009 May.
Artigo em Inglês | MEDLINE | ID: mdl-19552761

RESUMO

The role of melatonin in modulating mammalian reproduction is of particular interest; however, its effects on ovarian follicles and their oocytes still remain to be characterized. This study determined the influence of melatonin treatment on follicular growth patterns and on in vitro oocyte developmental competence. In a first experiment, the effects of melatonin supplementation on follicular dynamics were evaluated using daily transrectal ultrasonographies for 21 days, in 7 multiparous Sarda goats receiving a subcutaneous implant of 18 mg of melatonin and in 5 control untreated does. Melatonin caused more follicular waves (5.2 +/- 0.2 versus 4 +/- 0.3; P < 0.05) as the waves were shortened at around 2 days when compared with the non-melatonin treated control goats (P < 0.001). Oocyte developmental competence was evaluated in a second experiment by applying procedures for in vitro embryo production. There were no significant differences in the total number of oocytes obtained from 6 control (n = 192) and 7 melatonin-treated (n = 265) goats given follicle stimulating hormone to induce follicular development. Differences in oocyte developmental competence between the two groups became evident after in vitro fertilization and culture; melatonin increased the rate of cleaved oocytes in comparison with control animals (82.5 versus 63.4%; P < 0.001), advanced timing of embryo development and enhanced blastocyst output (31.5 versus 16.3%; P < 0.01). However, blastocyst quality, as evaluated by cryotolerance and gene expression analysis, was not found to be different between the groups. In conclusion, in vivo melatonin treatment is beneficial for increasing ovarian follicle turnover and improving oocyte developmental competence and kinetics of the blastocyst.


Assuntos
Blastocisto/efeitos dos fármacos , Cabras/fisiologia , Melatonina/farmacologia , Oócitos/efeitos dos fármacos , Folículo Ovariano/efeitos dos fármacos , Análise de Variância , Animais , Blastocisto/fisiologia , Contagem de Células , Feminino , Fertilização in vitro , Regulação da Expressão Gênica no Desenvolvimento/efeitos dos fármacos , Cabras/genética , Modelos Animais , Oócitos/crescimento & desenvolvimento , Oócitos/fisiologia , Folículo Ovariano/fisiologia , Reação em Cadeia da Polimerase Via Transcriptase Reversa
20.
Reprod Fertil Dev ; 21(7): 901-8, 2009.
Artigo em Inglês | MEDLINE | ID: mdl-19698294

RESUMO

This study compares the developmental capacity and cryotolerance of embryos produced from oocytes of stimulated prepubertal and adult Sarda goats. Twelve prepubertal and 13 adult goats were each given 110 and 175 IU FSH, respectively, and cumulus-oocyte complexes (COCs) were collected by laparoscopic oocyte-pick-up (LOPU). After in vitro maturation, fertilisation and culture (IVMFC), blastocysts were vitrified, warmed and blastocoel re-expansion and gene expression were evaluated. Prepubertal goats produced a higher COCs number than adults (mean +/- s.e.m., 89.67 +/- 5.74 and 26.69 +/- 3.66, respectively; P < 0.01). Lower developmental competence was demonstrated in the prepubertal oocytes as shown by a higher number of COCs discarded before IVM (21.1% and 14.7% for prepubertals and adults, respectively; P < 0.01) and IVF (23.4% v. 9.1%; P < 0.01) and by the lower cleavage (55.6% and 70.3%, respectively; P < 0.01) and blastocyst rates (24.2% and 33.9%, respectively; P < 0.05). Compared with the adult, prepubertal vitrified/warmed blastocysts showed significantly (P < 0.05) lower in vitro viability, as determined by the re-expansion rate (62.5% and 40.3%). No differences were observed in the time required for blastocoel re-expansion or in cyclin B1, E-cadherin, Na/K ATPase, HSP90beta and aquaporin 3 messenger RNA quantity. These results show that in vitro-produced embryos produced from prepubertal goat oocytes have a lower developmental rate and cryotolerance compared with their adult counterparts. However, we can assume that the quality of re-expanded embryos does not differ between the two groups.


Assuntos
Blastocisto/fisiologia , Criopreservação/veterinária , Fármacos para a Fertilidade Feminina/administração & dosagem , Fertilização in vitro/veterinária , Hormônio Foliculoestimulante/administração & dosagem , Cabras/embriologia , Laparoscopia/veterinária , Recuperação de Oócitos/veterinária , Ovulação/efeitos dos fármacos , Fatores Etários , Animais , Proliferação de Células , Sobrevivência Celular , Fase de Clivagem do Zigoto , Técnicas de Cultura Embrionária/veterinária , Regulação da Expressão Gênica no Desenvolvimento , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA