Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Bioinformatics ; 38(17): 4145-4152, 2022 09 02.
Artigo em Inglês | MEDLINE | ID: mdl-35792834

RESUMO

MOTIVATION: Over the past decade, network-based approaches have proven useful in identifying disease modules within the human interactome, often providing insights into key mechanisms and guiding the quest for therapeutic targets. This is all the more important, since experimental investigation of potential gene candidates is an expensive task, thus not always a feasible option. On the other hand, many sources of biological information exist beyond the interactome and an important research direction is the design of effective techniques for their integration. RESULTS: In this work, we introduce the Biological Random Walks (BRW) approach for disease gene prioritization in the human interactome. The proposed framework leverages multiple biological sources within an integrated framework. We perform an extensive, comparative study of BRW's performance against well-established baselines. AVAILABILITY AND IMPLEMENTATION: All codes are publicly available and can be downloaded at https://github.com/LeoM93/BiologicalRandomWalks. We used publicly available datasets, details on their retrieval and preprocessing are provided in the Supplementary Material. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.


Assuntos
Biologia Computacional , Software , Humanos
2.
Nat Commun ; 14(1): 1582, 2023 03 22.
Artigo em Inglês | MEDLINE | ID: mdl-36949045

RESUMO

Comprehensive understanding of the human protein-protein interaction (PPI) network, aka the human interactome, can provide important insights into the molecular mechanisms of complex biological processes and diseases. Despite the remarkable experimental efforts undertaken to date to determine the structure of the human interactome, many PPIs remain unmapped. Computational approaches, especially network-based methods, can facilitate the identification of previously uncharacterized PPIs. Many such methods have been proposed. Yet, a systematic evaluation of existing network-based methods in predicting PPIs is still lacking. Here, we report community efforts initiated by the International Network Medicine Consortium to benchmark the ability of 26 representative network-based methods to predict PPIs across six different interactomes of four different organisms: A. thaliana, C. elegans, S. cerevisiae, and H. sapiens. Through extensive computational and experimental validations, we found that advanced similarity-based methods, which leverage the underlying network characteristics of PPIs, show superior performance over other general link prediction methods in the interactomes we considered.


Assuntos
Mapeamento de Interação de Proteínas , Saccharomyces cerevisiae , Animais , Humanos , Mapeamento de Interação de Proteínas/métodos , Caenorhabditis elegans , Mapas de Interação de Proteínas , Biologia Computacional/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA