Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Sci Data ; 11(1): 195, 2024 Feb 13.
Artigo em Inglês | MEDLINE | ID: mdl-38351040

RESUMO

Urbanization has altered land surface properties driving changes in micro-climates. Urban form influences people's activities, environmental exposures, and health. Developing detailed and unified longitudinal measures of urban form is essential to quantify these relationships. Local Climate Zones [LCZ] are a culturally-neutral urban form classification scheme. To date, longitudinal LCZ maps at large scales (i.e., national, continental, or global) are not available. We developed an approach to map LCZs for the continental US from 1986 to 2020 at 100 m spatial resolution. We developed lightweight contextual random forest models using a hybrid model development pipeline that leveraged crowdsourced and expert labeling and cloud-enabled modeling - an approach that could be generalized to other countries and continents. Our model achieved good performance: 0.76 overall accuracy (0.55-0.96 class-wise F1 scores). To our knowledge, this is the first high-resolution, longitudinal LCZ map for the continental US. Our work may be useful for a variety of fields including earth system science, urban planning, and public health.

2.
Sci Total Environ ; 901: 165923, 2023 Nov 25.
Artigo em Inglês | MEDLINE | ID: mdl-37532052

RESUMO

Atmospheric microplastic deposition rates play a crucial role for calculating the input of microplastics in the environment and to further understand pollution patterns. In this study, the spatial and temporal distribution of atmospheric microplastic particles in urban and rural areas of Northern Germany was investigated. Therefore, eleven structurally diverse locations in Hamburg and Mecklenburg-Western Pomerania were equipped with bulk-deposition samplers in triplicates and sampled monthly between August 2019 and July 2020. The resulting 306 samples were treated with hydrogen peroxide (30 %) and sodium hypochlorite (6-14 %) to digest biological organic matter. The filters were subsequently stained with the lipophilic dye Nile Red and underwent visual microplastic identification via fluorescence microscopy. Fragments and fibers were quantified down to a cut-off size of 10 µm. The polymer composition of microplastic particles was investigated along a subset of particles via µ-Raman spectroscopy. The microplastic deposition rate for Northern Germany (89 ± 61 MP/m2/day) is in the same order of magnitude as those reported by previous studies. Significant differences in microplastic deposition rates were found between urban and rural sampling sites. Population density was identified as an important factor for greater amounts of microplastics and higher shares of fibers in urban samples. Special attention was given to the canopy cover at two forested sampling sites and an influence of the comb-out effect on atmospheric microplastic deposition was detected.

3.
Sci Total Environ ; 897: 165228, 2023 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-37419369

RESUMO

Urban green spaces (UGS) and peri-urban green spaces (P-UGS) play a crucial role in reducing the land surface temperature within the urban environment, especially during heat waves. Although their cooling effect generally is due to shading and evaporation, the role of soil texture and soil water availability on surface cooling remains largely unexplored. This study investigated the impact of soil texture on the spatio-temporal patterns of LST in different UGSs and P-UGSs in Hamburg (Germany) during a hot summer drought period. The LST and the Normalized Differentiated Moisture and Vegetation Indices (NDMI, NDVI) were calculated based on two Landsat 8 OLI/TIRS images from July 2013. Non-spatial and spatial statistical approaches such as stepwise backward regression or Hotspot (Getis-Ord Gi*) analyses were applied explaining LST distributions in relation to soil texture within each UGS and P-UGS. All GSs were clearly characterized as surface cooling islands whereas, for each GS, an individual thermal footprint was observed. Within all GSs, the LST patterns showed a significant negative relationship to NDMI values, whereas the NDVI values and the elevation were of minor importance. Soil texture was found to influence the LST distribution significantly in most UGSs and P-UGSs, where sites on clay-rich soils showed the highest LST values compared to sites on sand- or silt-rich soils. For example, in parks, clayey soils showed a mean LST of 25.3 °C whereas sand-dominated sites had a mean LST of only 23.1 °C. This effect was consistent throughout all statistical approaches, for both dates and across most GSs. This unexpected result was explained by the very low unsaturated hydraulic conductivity in clayey soils which limits plant water uptake and transpiration rates responsible for the evaporative cooling effect. We concluded that soil texture has to be considered for understanding and managing the surface cooling capacity of UGSs and P-UGSs.

4.
Sci Total Environ ; 905: 167306, 2023 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-37742968

RESUMO

Due to the scarcity of air temperature (Ta) observations, urban heat studies often rely on satellite-derived Land Surface Temperature (LST) to characterise the near-surface thermal environment. However, there remains a lack of a quantitative understanding on how LST differs from Ta within urban areas and what are the controlling factors of their interaction. We use crowdsourced air temperature measurements in Sydney, Australia, combined with urban landscape data, Local Climate Zones (LCZ), high-resolution satellite imagery, and machine learning to explore the influence of urban form and fabric on the interaction between Ta and LST. Results show that LST and Ta have distinct spatiotemporal characteristics, and their relationship differs by season, ecological infrastructure, and building morphology. We found greater seasonal variability in LST compared to Ta, along with more pronounced intra-urban spatial variability in LST, particularly in warmer seasons. We also observed a greater temperature difference between LST and Ta in the built environment compared to the natural LCZs, especially during warm days. Natural LCZs (areas with mostly dense and scattered trees) showed stronger LST-Ta relationships compared to built areas. In particular, we observe that built areas with higher building density (where the heat vulnerability is likely more pronounced) show insignificant or negative relationships between LST- Ta in summer. Our results also indicate that surface cover, distance from the ocean, and seasonality significantly influence the distribution of hot and cold spots for LST and Ta. The spatial distribution for Ta hot spots does not always overlap with LST. We find that relying solely on LST as a direct proxy for the urban thermal environment is inappropriate, particularly in densely built-up areas and during warm seasons. These findings provide new perspectives on the relationship between surface and canopy temperatures and how these relate to urban form and fabric.

5.
Sci Rep ; 12(1): 15433, 2022 09 14.
Artigo em Inglês | MEDLINE | ID: mdl-36104404

RESUMO

Cities with different background climates experience different thermal environments. Many studies have investigated land cover effects on surface urban heat in individual cities. However, a quantitative understanding of how background climates modify the thermal impact of urban land covers remains elusive. Here, we characterise land cover and their impacts on land surface temperature (LST) for 54 highly populated cities using Landsat-8 imagery. Results show that urban surface characteristics and their thermal response are distinctly different across various climate regimes, with the largest difference for cities in arid climates. Cold cities show the largest seasonal variability, with the least seasonality in tropical and arid cities. In tropical, temperate, and cold climates, normalised difference built-up index (NDBI) is the strongest contributor to LST variability during warm months followed by normalised difference vegetation index (NDVI), while normalised difference bareness index (NDBaI) is the most important factor in arid climates. These findings provide a climate-sensitive basis for future land cover planning oriented at mitigating local surface warming.


Assuntos
Monitoramento Ambiental , Urbanização , Cidades , Clima , Monitoramento Ambiental/métodos , Temperatura
6.
Sci Data ; 7(1): 264, 2020 08 11.
Artigo em Inglês | MEDLINE | ID: mdl-32782324

RESUMO

Although continental urban areas are relatively small, they are major drivers of environmental change at local, regional and global scales. Moreover, they are especially vulnerable to these changes owing to the concentration of population and their exposure to a range of hydro-meteorological hazards, emphasizing the need for spatially detailed information on urbanized landscapes. These data need to be consistent in content and scale and provide a holistic description of urban layouts to address different user needs. Here, we map the continental United States into Local Climate Zone (LCZ) types at a 100 m spatial resolution using expert and crowd-sourced information. There are 10 urban LCZ types, each associated with a set of relevant variables such that the map represents a valuable database of urban properties. These data are benchmarked against continental-wide existing and novel geographic databases on urban form. We anticipate the dataset provided here will be useful for researchers and practitioners to assess how the configuration, size, and shape of cities impact the important human and environmental outcomes.

7.
PLoS One ; 14(4): e0214474, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31017939

RESUMO

Cities are major drivers of environmental change at all scales and are especially at risk from the ensuing effects, which include poor air quality, flooding and heat waves. Typically, these issues are studied on a city-by-city basis owing to the spatial complexity of built landscapes, local topography and emission patterns. However, to ensure knowledge sharing and to integrate local-scale processes with regional and global scale modelling initiatives, there is a pressing need for a world-wide database on cities that is suited for environmental studies. In this paper we present a European database that has a particular focus on characterising urbanised landscapes. It has been derived using tools and techniques developed as part of the World Urban Database and Access Portal Tools (WUDAPT) project, which has the goal of acquiring and disseminating climate-relevant information on cities worldwide. The European map is the first major step toward creating a global database on cities that can be integrated with existing topographic and natural land-cover databases to support modelling initiatives.


Assuntos
Poluentes Atmosféricos/análise , Mudança Climática , Clima , Meio Ambiente , Poluição do Ar , Cidades , Europa (Continente) , Geografia , Controle de Qualidade , Reprodutibilidade dos Testes , Propriedades de Superfície , Saúde da População Urbana
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA