RESUMO
Internalization of G protein-coupled receptor (GPCRs) represents a nearly universal pathway for receptor downregulation. Imaging this process provides a means for the identification of pharmaceutical agents as well as potential ligands for orphan receptors. However, there is a need for the further development of near-infrared (NIR) probes capable of monitoring internalization in order to enable multiplexing with existing green fluorescent GPCR activity assays. Our laboratory has recently described a series of near-infrared (NIR) fluorophores in which a phosphinate functionality is inserted at the bridging position of the xanthene scaffold. These fluorophores, termed Nebraska Red (NR) dyes, provide attractive reagents for imaging protein localization. Herein, we disclose the development of NR-based HaloTag ligands for imaging membrane proteins on living cells. These new probes are utilized to image membrane pools of the human orexin type 2 receptor, an established target for the treatment of insomnia. We demonstrate the ability of fetal bovine serum (FBS) to noncovalently associate with a spirolactonized NR probe, enabling no-wash imaging with a 45-fold enhancement of fluorescence. Furthermore, we characterize the utility of NR-based HaloTag ligands for real-time monitoring of receptor internalization upon agonist stimulation. These new reagents enable potential multiplexing with existing GPCR activity assays in order to identify new modulators of GPCR activity as well as ligands for orphan receptors.
Assuntos
Corantes Fluorescentes/química , Receptores de Orexina/metabolismo , Animais , Células CHO , Cricetulus , Humanos , Hidrolases/química , Hidrolases/genética , Ligantes , Microscopia Confocal/métodos , Microscopia de Fluorescência/métodos , Mutação , Orexinas/metabolismoRESUMO
The worldwide incidence of fatty liver disease continues to rise, which may account for concurrent increases in the frequencies of more aggressive liver ailments. Given the existence of histologically identical fatty liver disease subtypes, there is a critical need for the identification of methods that can classify disease and potentially predict progression. Herein, we show that a panel of protein kinase chemosensors can distinguish fatty liver disease subtypes. These direct activity measurements highlight distinct differences between histologically identical fatty liver diseases arising from diets rich in fat versus alcohol and identify a previously unreported decrease in p38α activity associated with a high-fat diet. In addition, we have profiled kinase activities in both benign (diet-induced) and progressive (STAM) disease models. These experiments provide temporal insights into kinase activity during disease development and progression. Altogether, this work provides the basis for the future development of clinical diagnostics and potential treatment strategies.
Assuntos
Técnicas Biossensoriais/métodos , Dieta Hiperlipídica/efeitos adversos , Hepatopatia Gordurosa não Alcoólica/enzimologia , Proteínas Quinases/análise , Proteínas Quinases/química , Animais , Masculino , Hepatopatia Gordurosa não Alcoólica/induzido quimicamente , Ratos , Ratos WistarRESUMO
Ratiometric sensors generally couple binding events or chemical reactions at a distal site to changes in the fluorescence of a core fluorophore scaffold. However, such approaches are often hindered by spectral overlap of the product and reactant species. We provide a strategy to design ratiometric sensors that display dramatic spectral shifts by leveraging the chemoselective reactivity of novel functional groups inserted within fluorophore scaffolds. As a proof-of-principle, fluorophores containing a borinate (RF620 ) or silanediol (SiOH2R) functionality at the bridging position of the xanthene ring system are developed as endogenous H2 O2 sensors. Both these fluorophores display far-red to near-infrared excitation and emission prior to reaction. Upon oxidation by H2 O2 both sensors are chemically converted to tetramethylrhodamine, producing significant (≥66â nm) blue-shifts in excitation and emission maxima. This work provides a new concept for the development of ratiometric probes.
Assuntos
Corantes Fluorescentes/síntese química , Rodaminas/síntese química , Ácidos Borínicos/química , Corantes Fluorescentes/química , Células HeLa , Humanos , Microscopia Confocal , Microscopia de Fluorescência , Estrutura Molecular , Rodaminas/química , Silanos/química , Xantenos/químicaRESUMO
Hexanucleotide repeat expansions in C9orf72 are a major cause of frontotemporal lobar degeneration (FTLD) and amyotrophic lateral sclerosis (ALS). Understanding the disease mechanisms and a method for clinical diagnostic genotyping have been hindered because of the difficulty in estimating the expansion size. We found 96 repeat-primed PCR expansions: 85/2,974 in six neurodegenerative diseases cohorts (FTLD, ALS, Alzheimer disease, sporadic Creutzfeldt-Jakob disease, Huntington disease-like syndrome, and other nonspecific neurodegenerative disease syndromes) and 11/7,579 (0.15%) in UK 1958 birth cohort (58BC) controls. With the use of a modified Southern blot method, the estimated expansion range (smear maxima) in cases was 800-4,400. Similarly, large expansions were detected in the population controls. Differences in expansion size and morphology were detected between DNA samples from tissue and cell lines. Of those in whom repeat-primed PCR detected expansions, 68/69 were confirmed by blotting, which was specific for greater than 275 repeats. We found that morphology in the expansion smear varied among different individuals and among different brain regions in the same individual. Expansion size correlated with age at clinical onset but did not differ between diagnostic groups. Evidence of instability of repeat size in control families, as well as neighboring SNP and microsatellite analyses, support multiple expansion events on the same haplotype background. Our method of estimating the size of large expansions has potential clinical utility. C9orf72-related disease might mimic several neurodegenerative disorders and, with potentially 90,000 carriers in the United Kingdom, is more common than previously realized.
Assuntos
Esclerose Lateral Amiotrófica/genética , Expansão das Repetições de DNA , Degeneração Lobar Frontotemporal/genética , Degeneração Neural/genética , Proteínas/genética , Esclerose Lateral Amiotrófica/patologia , Encéfalo/patologia , Proteína C9orf72 , Estudos de Coortes , DNA/genética , Degeneração Lobar Frontotemporal/patologia , Predisposição Genética para Doença , Haplótipos , Humanos , Repetições de Microssatélites , Degeneração Neural/patologia , Polimorfismo de Nucleotídeo Único , Reino UnidoRESUMO
BACKGROUND: Human prion diseases, although variable in clinicopathological phenotype, generally present as neurologic or neuropsychiatric conditions associated with rapid multifocal central nervous system degeneration that is usually dominated by dementia and cerebellar ataxia. Approximately 15% of cases of recognized prion disease are inherited and associated with coding mutations in the gene encoding prion protein (PRNP). The availability of genetic diagnosis has led to a progressive broadening of the recognized spectrum of disease. METHODS: We used longitudinal clinical assessments over a period of 20 years at one hospital combined with genealogical, neuropsychological, neurophysiological, neuroimaging, pathological, molecular genetic, and biochemical studies, as well as studies of animal transmission, to characterize a novel prion disease in a large British kindred. We studied 6 of 11 affected family members in detail, along with autopsy or biopsy samples obtained from 5 family members. RESULTS: We identified a PRNP Y163X truncation mutation and describe a distinct and consistent phenotype of chronic diarrhea with autonomic failure and a length-dependent axonal, predominantly sensory, peripheral polyneuropathy with an onset in early adulthood. Cognitive decline and seizures occurred when the patients were in their 40s or 50s. The deposition of prion protein amyloid was seen throughout peripheral organs, including the bowel and peripheral nerves. Neuropathological examination during end-stage disease showed the deposition of prion protein in the form of frequent cortical amyloid plaques, cerebral amyloid angiopathy, and tauopathy. A unique pattern of abnormal prion protein fragments was seen in brain tissue. Transmission studies in laboratory mice were negative. CONCLUSIONS: Abnormal forms of prion protein that were found in multiple peripheral tissues were associated with diarrhea, autonomic failure, and neuropathy. (Funded by the U.K. Medical Research Council and others.).
Assuntos
Doenças do Sistema Nervoso Autônomo/etiologia , Encéfalo/patologia , Diarreia/etiologia , Doenças Priônicas/genética , Príons/genética , Animais , Doenças do Sistema Nervoso Autônomo/patologia , Feminino , Humanos , Estudos Longitudinais , Masculino , Camundongos , Camundongos Transgênicos , Mutação , Linhagem , Fenótipo , Placa Amiloide/patologia , Doenças Priônicas/complicações , Doenças Priônicas/patologia , Doenças Priônicas/transmissão , Proteínas PriônicasRESUMO
AIMS: Frontotemporal lobar degeneration (FTLD) is a progressive neurodegenerative disease and is the second most common form of young onset dementia after Alzheimer's disease (AD). An autosomal dominant pattern of inheritance is present in around 25-50% of FTLD cases indicating a strong genetic component. Major pathogenic mutations of FTLD have been demonstrated independently in the progranulin (GRN) gene and the C9orf72 hexanucleotide expansion repeat. In this study we present a family that have been identified as carrying both a GRN Cys31fs mutation and the C9orf72 hexanucleotide expansion repeat. METHODS: In the present study we describe the clinical and genetic details of family members and pathological features of two family members that have come to post-mortem. RESULTS: The mean age at disease onset was 57 years (48-61 years) and mean duration 4 years (2-7 years). The most common presenting syndrome was behavioural variant frontotemporal dementia. Brain imaging from available cases showed a symmetrical pattern of atrophy particularly affecting the frontal and temporal lobes. Pathologically two cases were classified as FTLD-TDP type A with TDP-43 positive inclusions, with additional p62-positive 'star-like' inclusions found in the hippocampal formation and cerebellum. CONCLUSIONS: The type and distribution of the pathological lesions in these two cases were in keeping with FTLD cases carrying only the C9orf72 hexanucleotide repeat. However the driving force of the pathological process may be either pathogenic mutation or a combination of both converging on a singular mechanism.
Assuntos
Encéfalo/patologia , Expansão das Repetições de DNA , Demência Frontotemporal/diagnóstico , Demência Frontotemporal/genética , Peptídeos e Proteínas de Sinalização Intercelular/genética , Mutação , Proteínas/genética , Idade de Início , Idoso , Proteína C9orf72 , Proteínas de Ligação a DNA/metabolismo , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Linhagem , Progranulinas , Proteínas de Ligação a RNA/metabolismoRESUMO
We describe the design, synthesis, and evaluation of a selective activity probe for leucine-rich repeat kinase 2 (LRRK2), a possible molecular target for the treatment of Parkinson's disease. Our optimal chemosensor design, termed Nictide-S2, incorporates a phosphorylation-sensitive sulfonamido-oxine fluorophore at an engineered cysteine within the substrate sequence. This design allows for the direct, real-time analysis of LRRK2 kinase activity with a detection limit of 2.5 nM. Under optimized conditions, we measured a Z' factor of 0.7 demonstrating the potential utility of this assay for inhibitor screening. Off-target kinases capable of phosphorylating Nictide-S2 are identified and an optimized inhibitor cocktail for suppressing background signal is provided. The resulting chemosensor could be utilized to identify LRRK2 inhibitors as well as selectively report on LRRK2 activity in the presence of off-target kinases.
Assuntos
Desenho de Fármacos , Corantes Fluorescentes , Oxiquinolina/química , Fragmentos de Peptídeos/metabolismo , Peptídeos/síntese química , Peptídeos/farmacologia , Inibidores de Proteínas Quinases/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Sulfonamidas/química , Técnicas Biossensoriais , Humanos , Serina-Treonina Proteína Quinase-2 com Repetições Ricas em Leucina , Fragmentos de Peptídeos/química , Fosforilação , Proteínas Serina-Treonina Quinases/química , Sulfonamidas/síntese química , Sulfonamidas/farmacologiaRESUMO
An expanded hexanucleotide repeat in the C9orf72 gene is the most common genetic cause of frontotemporal dementia and amyotrophic lateral sclerosis (c9FTD/ALS). We now report the first description of a homozygous patient and compare it to a series of heterozygous cases. The patient developed early-onset frontotemporal dementia without additional features. Neuropathological analysis showed c9FTD/ALS characteristics, with abundant p62-positive inclusions in the frontal and temporal cortices, hippocampus and cerebellum, as well as less abundant TDP-43-positive inclusions. Overall, the clinical and pathological features were severe, but did not fall outside the usual disease spectrum. Quantification of C9orf72 transcript levels in post-mortem brain demonstrated expression of all known C9orf72 transcript variants, but at a reduced level. The pathogenic mechanisms by which the hexanucleotide repeat expansion causes disease are unclear and both gain- and loss-of-function mechanisms may play a role. Our data support a gain-of-function mechanism as pure homozygous loss of function would be expected to lead to a more severe, or completely different clinical phenotype to the one described here, which falls within the usual range. Our findings have implications for genetic counselling, highlighting the need to use genetic tests that distinguish C9orf72 homozygosity.
Assuntos
Esclerose Lateral Amiotrófica/genética , Encéfalo/patologia , Expansão das Repetições de DNA/genética , Demência Frontotemporal/genética , Mutação/genética , Proteínas/genética , Idade de Início , Esclerose Lateral Amiotrófica/patologia , Proteína C9orf72 , Proteínas de Ligação a DNA/metabolismo , Demência Frontotemporal/patologia , Homozigoto , Humanos , Masculino , Pessoa de Meia-Idade , Testes Neuropsicológicos , Linhagem , Proteínas/metabolismoRESUMO
An expanded hexanucleotide repeat in the C9ORF72 gene has recently been identified as a major cause of familial frontotemporal lobar degeneration and motor neuron disease, including cases previously identified as linked to chromosome 9. Here we present a detailed retrospective clinical, neuroimaging and histopathological analysis of a C9ORF72 mutation case series in relation to other forms of genetically determined frontotemporal lobar degeneration ascertained at a specialist centre. Eighteen probands (19 cases in total) were identified, representing 35% of frontotemporal lobar degeneration cases with identified mutations, 36% of cases with clinical evidence of motor neuron disease and 7% of the entire cohort. Thirty-three per cent of these C9ORF72 cases had no identified relevant family history. Families showed wide variation in clinical onset (43-68 years) and duration (1.7-22 years). The most common presenting syndrome (comprising a half of cases) was behavioural variant frontotemporal dementia, however, there was substantial clinical heterogeneity across the C9ORF72 mutation cohort. Sixty per cent of cases developed clinical features consistent with motor neuron disease during the period of follow-up. Anxiety and agitation and memory impairment were prominent features (between a half to two-thirds of cases), and dominant parietal dysfunction was also frequent. Affected individuals showed variable magnetic resonance imaging findings; however, relative to healthy controls, the group as a whole showed extensive thinning of frontal, temporal and parietal cortices, subcortical grey matter atrophy including thalamus and cerebellum and involvement of long intrahemispheric, commissural and corticospinal tracts. The neuroimaging profile of the C9ORF72 expansion was significantly more symmetrical than progranulin mutations with significantly less temporal lobe involvement than microtubule-associated protein tau mutations. Neuropathological examination in six cases with C9ORF72 mutation from the frontotemporal lobar degeneration series identified histomorphological features consistent with either type A or B TAR DNA-binding protein-43 deposition; however, p62-positive (in excess of TAR DNA-binding protein-43 positive) neuronal cytoplasmic inclusions in hippocampus and cerebellum were a consistent feature of these cases, in contrast to the similar frequency of p62 and TAR DNA-binding protein-43 deposition in 53 control cases with frontotemporal lobar degeneration-TAR DNA-binding protein. These findings corroborate the clinical importance of the C9ORF72 mutation in frontotemporal lobar degeneration, delineate phenotypic and neuropathological features that could help to guide genetic testing, and suggest hypotheses for elucidating the neurobiology of a culprit subcortical network.
Assuntos
Degeneração Lobar Frontotemporal/genética , Proteínas/genética , Adulto , Idade de Início , Idoso , Atrofia , Encéfalo/patologia , Proteína C9orf72 , Cerebelo/patologia , Estudos de Coortes , Expansão das Repetições de DNA , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Imagem de Tensor de Difusão , Feminino , Degeneração Lobar Frontotemporal/patologia , Degeneração Lobar Frontotemporal/psicologia , Hipocampo/patologia , Humanos , Processamento de Imagem Assistida por Computador , Imageamento por Ressonância Magnética , Masculino , Pessoa de Meia-Idade , Mutação , Testes Neuropsicológicos , Linhagem , Reação em Cadeia da Polimerase , Medula Espinal/patologiaRESUMO
BACKGROUND: Kuru is a devastating epidemic prion disease that affected a highly restricted geographic area of the Papua New Guinea highlands; at its peak, it predominantly affected adult women and children of both sexes. Its incidence has steadily declined since the cessation of its route of transmission, endocannibalism. METHODS: We performed genetic and selected clinical and genealogic assessments of more than 3000 persons from Eastern Highland populations, including 709 who participated in cannibalistic mortuary feasts, 152 of whom subsequently died of kuru. RESULTS: Persons who were exposed to kuru and survived the epidemic in Papua New Guinea are predominantly heterozygotes at the known resistance factor at codon 129 of the prion protein gene (PRNP). We now report a novel PRNP variant--G127V--that was found exclusively in people who lived in the region in which kuru was prevalent and that was present in half of the otherwise susceptible women from the region of highest exposure who were homozygous for methionine at PRNP codon 129. Although this allele is common in the area with the highest incidence of kuru, it is not found in patients with kuru and in unexposed population groups worldwide. Genealogic analysis reveals a significantly lower incidence of kuru in pedigrees that harbor the protective allele than in geographically matched control families. CONCLUSIONS: The 127V polymorphism is an acquired prion disease resistance factor selected during the kuru epidemic, rather than a pathogenic mutation that could have triggered the kuru epidemic. Variants at codons 127 and 129 of PRNP demonstrate the population genetic response to an epidemic of prion disease and represent a powerful episode of recent selection in humans.
Assuntos
Predisposição Genética para Doença , Kuru/genética , Polimorfismo Genético , Príons/genética , Adolescente , Adulto , Idoso , Canibalismo , Surtos de Doenças , Feminino , Frequência do Gene , Aptidão Genética , Genótipo , Haplótipos , Humanos , Kuru/epidemiologia , Masculino , Pessoa de Meia-Idade , Papua Nova Guiné/epidemiologia , Proteínas Priônicas , Adulto JovemRESUMO
Genetic factors are implicated in the aetiology of sporadic late-onset neurodegenerative diseases. Whether these genetic variants are predominantly common or rare, and how multiple genetic factors interact with each other to cause disease is poorly understood. Inherited prion diseases are highly heterogeneous and may be clinically mistaken for sporadic Creutzfeldt-Jakob disease because of a negative family history. Here we report our investigation of patients from the UK with four extra octapeptide repeats, which suggest that the risk of clinical disease is increased by a combination of the mutation and a susceptibility haplotype on the wild-type chromosome. The predominant clinical syndrome is a progressive cortical dementia with pyramidal signs, myoclonus and cerebellar abnormalities that closely resemble sporadic Creutzfeldt-Jakob disease. Autopsy shows perpendicular deposits of prion protein in the molecular layer of the cerebellum. Identity testing, PRNP microsatellite haplotyping and genealogical work confirm no cryptic close family relationships and suggests multiple progenitor disease haplotypes. All patients were homozygous for methionine at polymorphic codon 129. In addition, at a single nucleotide polymorphism upstream of PRNP thought to confer susceptibility to sporadic Creutzfeldt-Jakob disease (rs1029273), all patients were homozygous for the risk allele (combined P=5.9×10(-5)). The haplotype identified may also be a risk factor in other partially penetrant inherited prion diseases although it does not modify age of onset. Blood expression of PRNP in healthy individuals was modestly higher in carriers of the risk haplotype. These findings may provide a precedent for understanding apparently sporadic neurodegenerative diseases caused by rare high-risk mutations.
Assuntos
Saúde da Família , Predisposição Genética para Doença , Mutagênese Insercional , Oligopeptídeos/genética , Doenças Priônicas/genética , Príons/genética , Idoso , Idoso de 80 Anos ou mais , Córtex Cerebral/metabolismo , Córtex Cerebral/patologia , Distribuição de Qui-Quadrado , Transtornos Cognitivos/etiologia , Transtornos Cognitivos/genética , Eletroencefalografia , Feminino , Testes Genéticos , Haplótipos , Humanos , Masculino , Pessoa de Meia-Idade , Doenças Priônicas/complicações , Doenças Priônicas/diagnóstico por imagem , Príons/metabolismo , Tomografia Computadorizada por Raios X/métodosRESUMO
Mutation of the human prion protein gene (PRNP) open reading frame (ORF) accounts for almost all reported familial concurrence of prion disease. The more common mutations globally: octapeptide repeat insertions, P102L, D178N, E200K, and V210I have occurred in large multigenerational pedigrees and display autosomal dominant inheritance, however, many rare genetic changes have been reported that are of uncertain pathogenicity. Based on 19 years of PRNP sequencing at the MRC Prion Unit, London, and analysis of 3664 samples from patients referred with suspected prion disease and healthy populations, we present novel allele combinations, healthy control population data, results of screening the PRNP ORF in DNA from the entire referral series and the CEPH human genome diversity cell line panel. Of the 10 alleles detected in patients for which detailed cases histories are presented, 4 are unreported (G54S, D167N, V209M, Q212PP), two changes are thought to be pathogenic but have not been described in our regions (P105L from the UK, G114V from India and Turkey), and the remainder reported in healthy control populations or in trans to known pathogenic mutations suggesting non- or low pathogenicity (G54S, 1-OPRI, G142S, N171S, V209M, E219K). New genotype-phenotype correlations and population frequencies presented will help the diagnosis and genetic counselling of those with suspected inherited prion disease.
Assuntos
Alelos , Mutação de Sentido Incorreto , Doenças Priônicas/genética , Príons/genética , Análise Mutacional de DNA/métodos , Frequência do Gene , Estudos de Associação Genética , Genótipo , Humanos , Londres , Doenças Priônicas/diagnósticoRESUMO
Microarrays enable comparative analyses of gene expression on a genomic scale, however these experiments frequently identify an abundance of differentially expressed genes such that it may be difficult to identify discrete functional networks that are hidden within large microarray datasets. Microarray analyses in which mutant organisms are compared to nonmutant siblings can be especially problematic when the gene of interest is expressed in relatively few cells. Here, we describe the use of laser microdissection microarray to perform transcriptional profiling of the maize shoot apical meristem (SAM), a ~100-microm pillar of organogenic cells that is required for leaf initiation. Microarray analyses compared differential gene expression within the SAM and incipient leaf primordium of nonmutant and narrow sheath mutant plants, which harbored mutations in the duplicate genes narrow sheath1 (ns1) and narrow sheath2 (ns2). Expressed in eight to ten cells within the SAM, ns1 and ns2 encode paralogous WUSCHEL1-like homeobox (WOX) transcription factors required for recruitment of leaf initials that give rise to a large lateral domain within maize leaves. The data illustrate the utility of laser microdissection-microarray analyses to identify a relatively small number of genes that are differentially expressed within the SAM. Moreover, these analyses reveal potentially conserved WOX gene functions and implicate specific hormonal and signaling pathways during early events in maize leaf development.
Assuntos
Regulação da Expressão Gênica de Plantas , Lasers , Meristema/metabolismo , Microdissecção , Mutação , Brotos de Planta/metabolismo , Zea mays/anatomia & histologia , Zea mays/genética , Meristema/genética , Dados de Sequência Molecular , Análise de Sequência com Séries de Oligonucleotídeos , Brotos de Planta/genéticaRESUMO
Protein phosphatases act in concert with protein kinases to regulate and maintain the phosphoproteome. However, the catalog of chemical tools to directly monitor the enzymatic activity of phosphatases has lagged behind their kinase counterparts. In this chapter, we provide protocols for repurposing the phosphorylation-sensitive sulfonamido-oxine fluorophore known as Sox to afford direct activity probes for phosphatases. With validated activity probes in-hand, inhibitor screens can be conducted with recombinant enzyme and the role of phosphatases in cell signaling can be investigated in unfractionated cell lysates.
Assuntos
Corantes Fluorescentes/química , Oxiquinolina/análogos & derivados , Fosfoproteínas Fosfatases/metabolismo , Sulfonamidas/química , Animais , Técnicas Biossensoriais/métodos , Técnicas de Química Sintética/métodos , Ensaios Enzimáticos/métodos , Corantes Fluorescentes/síntese química , Corantes Fluorescentes/metabolismo , Humanos , Oxiquinolina/síntese química , Oxiquinolina/metabolismo , Fosfoproteínas Fosfatases/análise , Fosforilação , Transdução de Sinais , Espectrometria de Fluorescência/métodos , Sulfonamidas/síntese química , Sulfonamidas/metabolismoRESUMO
It is now known that the inherited prion disease is caused by over 60 different mutations in the Prion protein (PRNP) gene. Four missense mutations at codons 102, 178, 200 and 210, account for over 95% of these cases. In this study we describe, a large Indian family with familial Creutzfeldt Jakob Disease (fCJD). One affected member presented with a presenile dementia, a protracted clinical course and characateristic MRI features. Genetic analysis revealed a D178N mutation in the 2 affected individuals and 7 unaffected members. The neuropathological examination of the brain of one of the affected member was conspicuous by spongiform degeneration, neuronal loss and gliosis. This is a detailed report of a genetically and neuropathologically proven fCJD from India.
RESUMO
Sibling concurrence of pathologically confirmed prion disease has only been reported in association with pathogenic mutation of the prion protein gene (PRNP). Here, we report 2 siblings with classic neuropathologic features of sporadic Creutzfeldt-Jakob disease unexplained by PRNP mutation or known risk factors for iatrogenic transmission of prion infection. Possible explanations include coincidental occurrence, common exposure to an unidentified environmental source of prions, horizontal transmission of disease, or the presence of unknown shared genetic predisposition.
Assuntos
Encéfalo/patologia , Síndrome de Creutzfeldt-Jakob/patologia , Síndrome de Creutzfeldt-Jakob/fisiopatologia , Príons/genética , Idoso , Idoso de 80 Anos ou mais , Síndrome de Creutzfeldt-Jakob/genética , Feminino , Humanos , Masculino , Mutação , Proteínas PrPSc/metabolismo , Proteínas Priônicas , IrmãosRESUMO
Through a multi-university and interdisciplinary project we have involved undergraduate biology and computer science research students in the functional annotation of maize genes and the analysis of their microarray expression patterns. We have created a database to house the results of our functional annotation of >4400 genes identified as being differentially regulated in the maize shoot apical meristem (SAM). This database is located at http://sam.truman.edu and is now available for public use. The undergraduate students involved in constructing this unique SAM database received hands-on training in an intellectually challenging environment, which has prepared them for graduate and professional careers in biological sciences. We describe our experiences with this project as a model for effective research-based teaching of undergraduate biology and computer science students, as well as for a rich professional development experience for faculty at predominantly undergraduate institutions.
Assuntos
Regulação da Expressão Gênica de Plantas , Genética/educação , Meristema/genética , Estudantes , Zea mays/genética , Bases de Dados Factuais , Genes de Plantas , Humanos , Informática , UniversidadesRESUMO
Huntington's disease (HD) classically presents with movement disorder, cognitive dysfunction and behavioral problems but is phenotypically variable. One percent of patients with HD-like symptoms lack the causative mutation and are considered HD phenocopies. Genetic diseases known to cause HD phenocopies include HD-like syndromes HDL1, HDL2, and HDL4 (SCA17). HD has phenotypic overlap with dentatorubral-pallidoluysian atrophy, the spinocerebellar ataxias and neuroferritinopathy. Identifying the genetic basis of HD phenocopies is important for diagnosis and may inform the search for HD genetic modifiers. We sought to identify neurogenetic diagnoses in the largest reported cohort of HD phenocopy patients. Two hundred eighty-five patients with syndromes consistent with HD, who were HD expansion-negative, were screened for mutations in PRNP, JPH3, TBP, DRPLA, SCA1, SCA2, SCA3, FTL and FRDA. Genetic diagnoses were made in 8 subjects: we identified 5 cases of HDL4, 1 of HDL1 and 1 of HDL2. One patient had Friedreich's ataxia. There were no cases of DRPLA, SCA1, SCA2, SCA3, or neuroferritinopathy. HD phenocopies are clinically and genetically diverse and a definitive genetic diagnosis is currently possible in only a minority of cases. When undertaken, it should be clinically directed and patients and clinicians should be prepared for the low probability of reaching a genetic diagnosis in this group of patients.
Assuntos
Doença de Huntington/diagnóstico , Transtornos dos Movimentos/diagnóstico , Transtornos dos Movimentos/genética , Adulto , Estudos de Coortes , Diagnóstico Diferencial , Feminino , Ataxia de Friedreich/diagnóstico , Ataxia de Friedreich/genética , Humanos , Masculino , Proteínas de Membrana/genética , Pessoa de Meia-Idade , Mutagênese Insercional , Fenótipo , Doenças Priônicas/diagnóstico , Doenças Priônicas/genética , Proteínas Priônicas , Príons/genética , Síndrome , Proteína de Ligação a TATA-Box/genéticaAssuntos
Encéfalo/patologia , Doenças Priônicas/epidemiologia , Príons/genética , Feminino , Humanos , MasculinoRESUMO
Somatic mutations during stem cell division are responsible for several cancers. In principle, a similar process could occur during the intense cell proliferation accompanying human brain development, leading to the accumulation of regionally distributed foci of mutations. Using dual platform >5000-fold depth sequencing of 102 genes in 173 adult human brain samples, we detect and validate somatic mutations in 27 of 54 brains. Using a mathematical model of neurodevelopment and approximate Bayesian inference, we predict that macroscopic islands of pathologically mutated neurons are likely to be common in the general population. The detected mutation spectrum also includes DNMT3A and TET2 which are likely to have originated from blood cell lineages. Together, these findings establish developmental mutagenesis as a potential mechanism for neurodegenerative disorders, and provide a novel mechanism for the regional onset and focal pathology in sporadic cases.