Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Artigo em Inglês | MEDLINE | ID: mdl-36809566

RESUMO

Owing to alignment of rhodopsin in microvillar photoreceptors, insects are sensitive to the oscillation plane of polarized light. This property is used by many species to navigate with respect to the polarization pattern of light from the blue sky. In addition, the polarization angle of light reflected from shiny surfaces such as bodies of water, animal skin, leaves, or other objects can enhance contrast and visibility. Whereas photoreceptors and central mechanisms involved in celestial polarization vision have been investigated in great detail, little is known about peripheral and central mechanisms of sensing the polarization angle of light reflected from objects and surfaces. Desert locusts, like other insects, use a polarization-dependent sky compass for navigation but are also sensitive to polarization angles from horizontal directions. In order to further analyze the processing of polarized light reflected from objects or water surfaces, we tested the sensitivity of brain interneurons to the angle of polarized blue light presented from ventral direction in locusts that had their dorsal eye regions painted black. Neurons encountered interconnect the optic lobes, invade the central body, or send descending axons to the ventral nerve cord but are not part of the polarization vision pathway involved in sky-compass coding.


Assuntos
Encéfalo , Gafanhotos , Animais , Encéfalo/fisiologia , Neurônios/fisiologia , Interneurônios , Gafanhotos/fisiologia , Insetos , Água
2.
Insect Biochem Mol Biol ; 164: 104058, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38072083

RESUMO

Chitin, a natural polymer of N-acetylglucosamine chains, is a principal component of the apical extracellular matrix in arthropods. Chitin microfibrils serve as structural components of natural biocomposites present in the extracellular matrix of a variety of invertebrates including sponges, molluscs, nematodes, fungi and arthropods. In this review, we summarize the frontier advances of insect chitin synthesis. More specifically, we focus on the chitin synthase (CHS), which catalyzes the key biosynthesis step. CHS is also known as an attractive insecticidal target in that this enzyme is absent in mammals, birds or plants. As no insect chitin synthase structure have been reported so far, we review recent studies on glycosyltransferase domain structures derived from fungi and oomycetes, which are conserved in CHS from all species containing chitin. Auxiliary proteins, which coordinate with CHS in chitin biosynthesis and assembly, are also discussed.


Assuntos
Artrópodes , Quitina Sintase , Animais , Quitina Sintase/metabolismo , Insetos/genética , Insetos/metabolismo , Artrópodes/metabolismo , Invertebrados/metabolismo , Fungos , Quitina/metabolismo , Mamíferos/metabolismo
3.
J Comp Neurol ; 531(14): 1350-1380, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37424289

RESUMO

In most animals, multiple external and internal signals are integrated by the brain, transformed and, finally, transmitted as commands to motor centers. In insects, the central complex is a motor control center in the brain, involved in decision-making and goal-directed navigation. In desert locusts, it encodes celestial cues in a compass-like fashion indicating a role in sky-compass navigation. While several descending brain neurons (DBNs) including two neurons transmitting sky compass signals have been identified in the locust, a complete analysis of DBNs and their relationship to the central complex is still lacking. As a basis for further studies, we used Neurobiotin tracer injections into a neck connective to map the organization of DBNs in the brain. Cell counts revealed a maximum of 324 bilateral pairs of DBNs with somata distributed in 14 ipsilateral and nine contralateral groups. These neurons invaded most brain neuropils, especially the posterior slope, posterior and ventro-lateral protocerebrum, the antennal mechanosensory and motor center, but less densely the lateral accessory lobes that are targeted by central-complex outputs. No arborizations were found in the central complex and only few processes in the mushroom body, antennal lobe, lobula, medulla, and superior protocerebrum. Double label experiments provide evidence for the presence of GABA, dopamine, tyramine, but not serotonin, in small sets of DBNs. The data show that some DBNs may be targeted directly by central-complex outputs, but many others are likely only indirectly influenced by central-complex networks, in addition to input from multiple other brain areas.


Assuntos
Encéfalo , Gafanhotos , Animais , Encéfalo/fisiologia , Neurônios/fisiologia , Neurópilo , Tiramina , Gafanhotos/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA