Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 99
Filtrar
1.
J Biol Chem ; 300(6): 107330, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38679329

RESUMO

The cannabinoid type 2 receptor (CB2R), a G protein-coupled receptor, is an important regulator of immune cell function and a promising target to treat chronic inflammation and fibrosis. While CB2R is typically targeted by small molecules, including endo-, phyto-, and synthetic cannabinoids, peptides-owing to their size-may offer a different interaction space to facilitate differential interactions with the receptor. Here, we explore plant-derived cyclic cystine-knot peptides as ligands of the CB2R. Cyclotides are known for their exceptional biochemical stability. Recently, they gained attention as G protein-coupled receptor modulators and as templates for designing peptide ligands with improved pharmacokinetic properties over linear peptides. Cyclotide-based ligands for CB2R were profiled based on a peptide-enriched extract library comprising nine plants. Employing pharmacology-guided fractionation and peptidomics, we identified the cyclotide vodo-C1 from sweet violet (Viola odorata) as a full agonist of CB2R with an affinity (Ki) of 1 µM and a potency (EC50) of 8 µM. Leveraging deep learning networks, we verified the structural topology of vodo-C1 and modeled its molecular volume in comparison to the CB2R ligand binding pocket. In a fragment-based approach, we designed and characterized vodo-C1-based bicyclic peptides (vBCL1-4), aiming to reduce size and improve potency. Opposite to vodo-C1, the vBCL peptides lacked the ability to activate the receptor but acted as negative allosteric modulators or neutral antagonists of CB2R. This study introduces a macrocyclic peptide phytocannabinoid, which served as a template for the development of synthetic CB2R peptide modulators. These findings offer opportunities for future peptide-based probe and drug development at cannabinoid receptors.


Assuntos
Receptor CB2 de Canabinoide , Receptor CB2 de Canabinoide/metabolismo , Receptor CB2 de Canabinoide/agonistas , Receptor CB2 de Canabinoide/química , Humanos , Ligantes , Ciclotídeos/química , Ciclotídeos/farmacologia , Células HEK293 , Descoberta de Drogas
2.
Chemistry ; 30(24): e202400120, 2024 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-38363216

RESUMO

Controlled cell death is essential for the regulation of the immune system and plays a role in pathogen defense. It is often altered in pathogenic conditions such as cancer, viral infections and autoimmune diseases. The Fas receptor and its corresponding membrane-bound ligand (FasL) are part of the extrinsic apoptosis pathway activated in these cases. A soluble form of FasL (sFasL), produced by ectodomain shedding, displays a diverse but still elusive set of non-apoptotic functions and sometimes even serves as a pro-survival factor. To gather more knowledge about the characteristics of this protein and the impact N-glycosylations may have, access to homogeneous posttranslationally modified variants of sFasL is needed. Therefore, we developed a flexible strategy to obtain such homogeneously N-glycosylated variants of sFasL by applying chemical protein synthesis. This strategy can be flexibly combined with enzymatic methods to introduce more complex, site selective glycosylations.


Assuntos
Proteína Ligante Fas , Apoptose , Proteína Ligante Fas/metabolismo , Proteína Ligante Fas/química , Receptor fas/metabolismo , Receptor fas/química , Glicosilação , Processamento de Proteína Pós-Traducional , Solubilidade
3.
Bioorg Med Chem ; 100: 117617, 2024 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-38306881

RESUMO

CD44, a ubiquitously expressed transmembrane receptor, plays a crucial role in cell growth, migration, and tumor progression. Dimerization of CD44 is a key event in signal transduction and has emerged as a potential target for anti-tumor therapies. Palmitoylation, a posttranslational modification, disrupts CD44 dimerization and promotes CD44 accumulation in ordered membrane domains. However, the effects of palmitoylation on the structure and dynamics of CD44 at atomic resolution remain poorly understood. Here, we present a semisynthetic approach combining solid-phase peptide synthesis, recombinant expression, and native chemical ligation to investigate the impact of palmitoylation on the cytoplasmic domain (residues 669-742) of CD44 (CD44ct) by NMR spectroscopy. A segmentally isotope-labeled and site-specifically palmitoylated CD44 variant enabled NMR studies, which revealed chemical shift perturbations and indicated local and long-range conformational changes induced by palmitoylation. The long-range effects suggest altered intramolecular interactions and potential modulation of membrane association patterns. Semisynthetic, palmitoylated CD44ct serves as the basis for studying CD44 clustering, conformational changes, and localization within lipid rafts, and could be used to investigate its role as a tumor suppressor and to explore its therapeutic potential.


Assuntos
Receptores de Hialuronatos , Lipoilação , Transdução de Sinais , Receptores de Hialuronatos/química
4.
Chembiochem ; 24(12): e202200741, 2023 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-36892535

RESUMO

Post-translational modifications affect protein biology under physiological and pathological conditions. Efficient methods for the preparation of peptides and proteins carrying defined, homogeneous modifications are fundamental tools for investigating these functions. In the case of mucin 1 (MUC1), an altered glycosylation pattern is observed in carcinogenesis. To better understand the role of MUC1 glycosylation in the interactions and adhesion of cancer cells, we prepared a panel of homogeneously O-glycosylated MUC1 peptides by using a quantitative chemoenzymatic approach. Cell-adhesion experiments with MCF-7 cancer cells on surfaces carrying up to six differently glycosylated MUC1 peptides demonstrated that different glycans have a significant impact on adhesion. This finding suggests a distinct role for MUC1 glycosylation patterns in cancer cell migration and/or invasion. To decipher the molecular mechanism for the observed adhesion, we investigated the conformation of the glycosylated MUC1 peptides by NMR spectroscopy. These experiments revealed only minor differences in peptide structure, therefore clearly relating the adhesion behaviour to the type and number of glycans linked to MUC1.


Assuntos
Glicopeptídeos , Mucina-1 , Mucina-1/química , Glicopeptídeos/química , Glicosilação , Adesão Celular , Peptídeos/química , Proteínas/metabolismo , Polissacarídeos
5.
Chembiochem ; 24(13): e202300098, 2023 07 03.
Artigo em Inglês | MEDLINE | ID: mdl-36917494

RESUMO

Over the past decades, several strategies for inducing and stabilizing secondary structure formation in peptides have been developed to increase their proteolytic stability and their binding affinity to specific interaction partners. Here, we report how our recently introduced chemoselective Pd-catalyzed cysteine allylation reaction can be extended to stapling and how the resulting alkene-containing staples themselves can be further modified to introduce additional probes into such stabilized peptides. The latter is demonstrated by introducing a fluorophore as well as a PEG moiety into different stapled peptides using bioorthogonal thiol-ene and Diels-Alder reactions. Furthermore, we investigated structural implications of our allyl staples when used to replace conformationally relevant disulfide bridges. To this end, we chose a selective binder of integrin α3 ß1 (LXY3), which is only active in its cyclic disulfide form. We replaced the disulfide bridge by different stapling reagents in order to increase stability and binding affinity towards integrin α3 ß1 .


Assuntos
Cisteína , Peptídeos , Cisteína/química , Peptídeos/química , Compostos de Sulfidrila/química , Peptídeo Hidrolases , Dissulfetos
6.
Chemistry ; 29(46): e202301253, 2023 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-37265454

RESUMO

Diselenide-selenoester ligations are increasingly used for the synthesis of proteins. Excellent ligation rates, even at low concentrations, in combination with mild and selective deselenization conditions can overcome some of the most severe challenges in chemical protein synthesis. Herein, the versatile multicomponent synthesis and application of a new ligation auxiliary that combines a photocleavable scaffold with the advantages of selenium-based ligation strategies are presented. Its use was investigated with respect to different ligation junctions and describe a novel para-methoxybenzyl deprotection reaction for the selenol moiety. The glycine-based auxiliary enabled successful synthesis of the challenging target protein G-CSF.


Assuntos
Peptídeos , Proteínas , Peptídeos/química , Proteínas/química
7.
J Biol Chem ; 296: 100359, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33539927

RESUMO

Prion diseases are a group of neurodegenerative disorders that infect animals and humans with proteinaceous particles called prions. Prions consist of scrapie prion protein (PrPSc), a misfolded version of the cellular prion protein (PrPC). During disease progression, PrPSc replicates by interacting with PrPC and inducing its conversion to PrPSc. Attachment of PrPC to cellular membranes via a glycosylphosphatidylinositol (GPI) anchor is critical for the conversion of PrPC into PrPSc. However, the mechanisms governing PrPC conversion and replication on the membrane remain largely unclear. Here, a site-selectively modified PrP variant equipped with a fluorescent GPI anchor mimic (PrP-GPI) was employed to directly observe PrP at the cellular membrane in neuronal SH-SY5Y cells. PrP-GPI exhibits a cholesterol-dependent membrane accumulation and a cytoskeleton-dependent mobility. More specifically, inhibition of actin polymerization reduced the diffusion of PrP-GPI indicating protein clustering, which resembles the initial step of PrP aggregation and conversion into its pathogenic isoform. An intact actin cytoskeleton might therefore prevent conversion of PrPC into PrPSc and offer new therapeutic angles.


Assuntos
Citoesqueleto/fisiologia , Proteínas de Membrana/metabolismo , Príons/metabolismo , Actinas/metabolismo , Linhagem Celular , Membrana Celular/metabolismo , Análise por Conglomerados , Citoesqueleto/metabolismo , Glicosilfosfatidilinositóis/química , Glicosilfosfatidilinositóis/metabolismo , Humanos , Neurônios/metabolismo , Proteínas PrPSc/metabolismo , Doenças Priônicas/metabolismo , Proteínas Priônicas/metabolismo , Isoformas de Proteínas/metabolismo , Scrapie/metabolismo
8.
Angew Chem Int Ed Engl ; 61(39): e202206116, 2022 09 26.
Artigo em Inglês | MEDLINE | ID: mdl-35853828

RESUMO

Granulocyte colony stimulating factor (G-CSF) is a cytokine used to treat neutropenia. Different glycosylated and non-glycosylated variants of G-CSF for therapeutic application are currently generated by recombinant expression. Here, we describe our approaches to establish a first semisynthesis strategy to access the aglycone and O-glycoforms of G-CSF, thereby enabling the preparation of selectively and homogeneously post-translationally modified variants of this important cytokine. Eventually, we succeeded by combining selenocysteine ligation of a recombinantly produced N-terminal segment with a synthetic C-terminal part, transiently equipped with a side-chain-linked, photocleavable PEG moiety, at low concentration. The transient PEGylation enabled quantitative enzymatic elongation of the carbohydrate at Thr133. Overall, we were able to significantly reduce the problems related to the low solubility and the tendency to aggregate of the two protein segments, which allowed the preparation of four G-CSF variants that were successfully folded and demonstrated biological activity in cell proliferation assays.


Assuntos
Fator Estimulador de Colônias de Granulócitos , Selenocisteína , Carboidratos , Citocinas , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo
9.
Angew Chem Int Ed Engl ; 61(15): e202111266, 2022 04 04.
Artigo em Inglês | MEDLINE | ID: mdl-34611966

RESUMO

Lipidation is a ubiquitous modification of peptides and proteins that can occur either co- or post-translationally. An array of different lipid classes can adorn proteins and has been shown to influence a number of crucial biological activities, including the regulation of signaling, cell-cell adhesion events, and the anchoring of proteins to lipid rafts and phospholipid membranes. Whereas nature employs a range of enzymes to install lipid modifications onto proteins, the use of these for the chemoenzymatic generation of lipidated proteins is often inefficient or impractical. An alternative is to harness the power of modern synthetic and semisynthetic technologies to access lipid-modified proteins in a pure and homogeneously modified form. This Review aims to highlight significant advances in the development of lipidation and ligation chemistry and their implementation in the synthesis and semisynthesis of homogeneous lipidated proteins that have enabled the influence of these modifications on protein structure and function to be uncovered.


Assuntos
Peptídeos , Proteínas , Metabolismo dos Lipídeos , Lipídeos/química , Peptídeos/metabolismo , Proteínas/química
10.
Angew Chem Int Ed Engl ; 61(20): e202200163, 2022 05 09.
Artigo em Inglês | MEDLINE | ID: mdl-35194928

RESUMO

Herein, we describe the development and application of a novel expressed protein selenoester ligation (EPSL) methodology for the one-pot semi-synthesis of modified proteins. EPSL harnesses the rapid kinetics of ligation reactions between modified synthetic selenopeptides and protein aryl selenoesters (generated from expressed intein fusion precursors) followed by in situ chemoselective deselenization to afford target proteins at concentrations that preclude the use of traditional ligation methods. The utility of the EPSL technology is showcased through the efficient semi-synthesis of ubiquitinated polypeptides, lipidated analogues of the membrane-associated GTPase YPT6, and site-specifically phosphorylated variants of the oligomeric chaperone protein Hsp27 at high dilution.


Assuntos
Peptídeos , Proteínas
11.
Bioconjug Chem ; 32(8): 1742-1752, 2021 08 18.
Artigo em Inglês | MEDLINE | ID: mdl-34288667

RESUMO

Integral membrane proteins (IMPs) comprise highly important classes of proteins such as transporters, sensors, and channels, but their investigation and biotechnological application are complicated by the difficulty to stabilize them in solution. We set out to develop a biomimetic procedure to encapsulate functional integral membrane proteins in silica to facilitate their handling under otherwise detrimental conditions and thereby extend their applicability. To this end, we designed and expressed new fusion constructs of the membrane scaffold protein MSP with silica-precipitating peptides based on the R5 sequence from the diatom Cylindrotheca fusiformis. Transmission electron microscopy (TEM) and atomic force microscopy (AFM) revealed that membrane lipid nanodiscs surrounded by our MSP variants fused to an R5 peptide, so-called nanodiscs, were formed. Exposing them to silicic acid led to silica-encapsulated nanodiscs, a new material for stabilizing membrane structures and a first step toward incorporating membrane proteins in such structures. In an alternative approach, four fusion constructs based on the amphiphilic ß-sheet peptide BP-1 and the R5 peptide were generated and successfully employed toward silica encapsulation of functional diacylglycerol kinase (DGK). Silica-encapsulated DGK was significantly more stable against protease exposure and incubation with simulated gastric fluid (SGF) and intestinal fluid (SIF).


Assuntos
Diacilglicerol Quinase/metabolismo , Lipídeos/química , Nanoestruturas/química , Dióxido de Silício/química , Sequência de Aminoácidos , Materiais Biomiméticos , Diacilglicerol Quinase/química , Modelos Moleculares , Conformação Proteica em Folha beta
12.
FASEB J ; 34(10): 14024-14041, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32860638

RESUMO

Aluminium salts have been used in vaccines for decades. However, the mechanisms underlying their adjuvant effect are still unclear. Neutrophils, the first immune cells at the injection site, can release cellular DNA together with granular material, so-called neutrophil extracellular traps (NETs). In mice, NETs apparently play a role in aluminium hydroxide (alum)-adjuvant immune response to vaccines. Although no experimental data exist, this effect is assumed to be operative also in humans. As a first step to verify this knowledge in humans, we demonstrate that the injection of alum particles into human skin biopsies ex vivo leads to similar tissue infiltration of neutrophils and NET-formation. Moreover, we characterized the mechanism leading to alum-induced NET-release in human neutrophils as rapid, NADPH oxidase-independent process involving charge, phagocytosis, phagolysosomal rupture, Ca2+ -flux, hyperpolarization of the mitochondrial membrane, and mitochondrial ROS. Extracellular flow and inhibition experiments suggested that no additional energy from oxidative phosphorylation or glycolysis is required for NET-release. This study suggests a so far unappreciated role for neutrophils in the initial phase of immune responses to alum-containing vaccines in humans and provides novel insights into bioenergetic requirements of NET-formation.


Assuntos
Adjuvantes Imunológicos/farmacologia , Hidróxido de Alumínio/farmacologia , Armadilhas Extracelulares , Lisossomos/metabolismo , Potencial da Membrana Mitocondrial , Infiltração de Neutrófilos , Neutrófilos/efeitos dos fármacos , Cálcio/metabolismo , Células Cultivadas , Glicólise , Humanos , Mitocôndrias/metabolismo , NADPH Oxidases/metabolismo , Neutrófilos/citologia , Neutrófilos/imunologia , Fosforilação Oxidativa
13.
Soft Matter ; 17(1): 201, 2021 Jan 07.
Artigo em Inglês | MEDLINE | ID: mdl-33325980

RESUMO

Correction for 'Correction: Multi-scale microporous silica microcapsules from gas-in water-in oil emulsions' by Zenon Toprakcioglu et al., Soft Matter, 2020, 16, 3586-3586, DOI: .

14.
Soft Matter ; 16(12): 3082-3087, 2020 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-32140697

RESUMO

Controlling the surface area, pore size and pore volume of microcapsules is crucial for modulating their activity in applications including catalytic reactions, delivery strategies or even cell culture assays, yet remains challenging to achieve using conventional bulk techniques. Here we describe a microfluidics-based approach for the formation of monodisperse silica-coated micron-scale porous capsules of controllable sizes. Our method involves the generation of gas-in water-in oil emulsions, and the subsequent rapid precipitation of silica which forms around the encapsulated gas bubbles resulting in hollow silica capsules with tunable pore sizes. We demonstrate that by varying the gas phase pressure, we can control both the diameter of the bubbles formed and the number of internal bubbles enclosed within the silica microcapsule. Moreover, we further demonstrate, using optical and electron microscopy, that these silica capsules remain stable under particle drying. Such a systematic manner of producing silica-coated microbubbles and porous microparticles thus represents an attractive class of biocompatible material for biomedical and pharmaceutical related applications.


Assuntos
Cápsulas/química , Emulsões/química , Óleos/química , Dióxido de Silício/química , Água/química , Materiais Biocompatíveis/química , Composição de Medicamentos/instrumentação , Desenho de Equipamento , Gases/química , Microbolhas , Porosidade
15.
Soft Matter ; 16(14): 3586, 2020 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-32219268

RESUMO

Correction for 'Multi-scale microporous silica microcapsules from gas-in water-in oil emulsions' by Zenon Toprakcioglu et al., Soft Matter, 2020, DOI: 10.1039/c9sm02274k.

16.
Proc Natl Acad Sci U S A ; 114(41): E8575-E8584, 2017 10 10.
Artigo em Inglês | MEDLINE | ID: mdl-28973899

RESUMO

Professional secretory cells can produce large amounts of high-quality complex molecules, including IgM antibodies. Owing to their multivalency, polymeric IgM antibodies provide an efficient first-line of defense against pathogens. To decipher the mechanisms of IgM assembly, we investigated its biosynthesis in living cells and faithfully reconstituted the underlying processes in vitro. We find that a conserved peptide extension at the C-terminal end of the IgM heavy (Ig-µ) chains, termed the tailpiece, is necessary and sufficient to establish the correct geometry. Alanine scanning revealed that hydrophobic amino acids in the first half of the tailpiece contain essential information for generating the correct topology. Assembly is triggered by the formation of a disulfide bond linking two tailpieces. This induces conformational changes in the tailpiece and the adjacent domain, which drive further polymerization. Thus, the biogenesis of large and topologically challenging IgM complexes is dictated by a local conformational switch in a peptide extension.


Assuntos
Imunoglobulina M/metabolismo , Cadeias mu de Imunoglobulina/metabolismo , Fragmentos de Peptídeos/metabolismo , Células HEK293 , Humanos , Imunoglobulina M/química , Cadeias mu de Imunoglobulina/química , Fragmentos de Peptídeos/química , Multimerização Proteica
17.
Biochemistry ; 58(22): 2642-2652, 2019 06 04.
Artigo em Inglês | MEDLINE | ID: mdl-31117386

RESUMO

Immune system engagers (ISErs) make up a new class of immunotherapeutics against cancer. They comprise two or more tumor-targeting peptides and an immune-stimulating effector peptide connected by inert polymer linkers. They are produced by solid phase peptide synthesis and share the specific targeting activities of antibodies (IgGs) but are much smaller in size and exploit a different immune-stimulating mechanism. Two ISErs (Y-9 and Y-59) that bind to the cancer cell markers integrin α3 and EphA2, respectively, are analyzed here with respect to their immune cell stimulation. We have previously shown that they activate formyl peptide receptors on myeloid immune cells and induce respiratory burst in neutrophils and myeloid chemotaxis in solution. It remained, however, unclear whether these molecules can stimulate immune cells while bound to tumor cells, an essential step in the hypothesized mode of action. Here, we demonstrate that ISEr Y-9 induced respiratory burst and caused a change in the shape of neutrophils when bound to the surface of protein A beads as a model of tumor cells. More importantly, tumor cell lines carrying receptor-bound Y-9 or Y-59 also activated neutrophils, evidenced by a significant change in shape. Interestingly, similar activation was induced by the supernatants of the cells incubated with ISEr, indicating that ISErs released from tumor cells, intact or degraded into fragments, significantly contributed to immune stimulation. These findings provide new evidence for the mode of action of ISErs, namely by targeting cancer cells and subsequently provoking an innate immune response against them.


Assuntos
Antineoplásicos Imunológicos/farmacologia , Fatores Imunológicos/farmacologia , Ativação de Neutrófilo/efeitos dos fármacos , Neutrófilos/efeitos dos fármacos , Peptídeos/farmacologia , Antineoplásicos Imunológicos/metabolismo , Biotina/química , Linhagem Celular Tumoral , Efrina-A2/metabolismo , Humanos , Fatores Imunológicos/metabolismo , Integrina alfa3/metabolismo , NADPH Oxidases/metabolismo , Neutrófilos/citologia , Peptídeos/metabolismo , Receptor EphA2 , Estreptavidina/química
18.
J Am Chem Soc ; 141(37): 14931-14937, 2019 09 18.
Artigo em Inglês | MEDLINE | ID: mdl-31469558

RESUMO

The prenylation of peptides and proteins is an important post-translational modification observed in vivo. We report that the Pd-catalyzed Tsuji-Trost allylation with a Pd/BIPHEPHOS catalyst system allows the allylation of Cys-containing peptides and proteins with complete chemoselectivity and high n/i regioselectivity. In contrast to recently established methods, which use non-native connections, the Pd-catalyzed prenylation produces the natural n-prenylthioether bond. In addition, a variety of biophysical probes such as affinity handles and fluorescent tags can be introduced into Cys-containing peptides and proteins. Furthermore, peptides containing two cysteine residues can be stapled or cyclized using homobifunctional allylic carbonate reagents.


Assuntos
Cisteína/química , Paládio/química , Peptídeos/química , Processamento de Proteína Pós-Traducional , Proteínas/química , Catálise , Prenilação
19.
J Biomol NMR ; 73(10-11): 587-599, 2019 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-31317299

RESUMO

Most eukaryotic proteins are modified during and/or after translation, regulating their structure, function and localisation. The role of posttranslational modifications (PTMs) in both normal cellular processes and in diseases is already well recognised and methods for detection of PTMs and generation of specifically modified proteins have developed rapidly over the last decade. However, structural consequences of PTMs and their specific effects on protein dynamics and function are not well understood. Furthermore, while random coil NMR chemical shifts of the 20 standard amino acids are available and widely used for residue assignment, dihedral angle predictions and identification of structural elements or propensity, they are not available for most posttranslationally modified amino acids. Here, we synthesised a set of random coil peptides containing common naturally occurring PTMs and determined their random coil NMR chemical shifts under standardised conditions. We highlight unique NMR signatures of posttranslationally modified residues and their effects on neighbouring residues. This comprehensive dataset complements established random coil shift datasets of the 20 standard amino acids and will facilitate identification and assignment of posttranslationally modified residues. The random coil shifts will also aid in determination of secondary structure elements and prediction of structural parameters of proteins and peptides containing PTMs.


Assuntos
Ressonância Magnética Nuclear Biomolecular/métodos , Processamento de Proteína Pós-Traducional , Estrutura Secundária de Proteína , Conjuntos de Dados como Assunto , Peptídeos/química , Conformação Proteica , Proteínas/química
20.
J Pept Sci ; 25(10): e3216, 2019 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-31713950

RESUMO

Deciphering the pathophysiologic events in prion diseases is challenging, and the role of posttranslational modifications (PTMs) such as glypidation and glycosylation remains elusive due to the lack of homogeneous protein preparations. So far, experimental studies have been limited in directly analyzing the earliest events of the conformational change of cellular prion protein (PrPC ) into scrapie prion protein (PrPSc ) that further propagates PrPC misfolding and aggregation at the cellular membrane, the initial site of prion infection, and PrP misfolding, by a lack of suitably modified PrP variants. PTMs of PrP, especially attachment of the glycosylphosphatidylinositol (GPI) anchor, have been shown to be crucially involved in the PrPSc formation. To this end, semisynthesis offers a unique possibility to understand PrP behavior invitro and invivo as it provides access to defined site-selectively modified PrP variants. This approach relies on the production and chemoselective linkage of peptide segments, amenable to chemical modifications, with recombinantly produced protein segments. In this article, advances in understanding PrP conversion using semisynthesis as a tool to obtain homogeneous posttranslationally modified PrP will be discussed.


Assuntos
Proteínas PrPC/síntese química , Proteínas PrPSc/síntese química , Dobramento de Proteína , Processamento de Proteína Pós-Traducional , Animais , Humanos , Proteínas PrPC/química , Proteínas PrPC/metabolismo , Proteínas PrPSc/química , Proteínas PrPSc/metabolismo , Doenças Priônicas/metabolismo , Doenças Priônicas/patologia , Agregação Patológica de Proteínas/metabolismo , Agregação Patológica de Proteínas/patologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA