Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 87
Filtrar
1.
Pflugers Arch ; 476(4): 593-610, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38374228

RESUMO

The transport of bicarbonate across the enterocyte cell membrane regulates the intracellular as well as the luminal pH and is an essential part of directional fluid movement in the gut. Since the first description of "active" transport of HCO3- ions against a concentration gradient in the 1970s, the fundamental role of HCO3- transport for multiple intestinal functions has been recognized. The ion transport proteins have been identified and molecularly characterized, and knockout mouse models have given insight into their individual role in a variety of functions. This review describes the progress made in the last decade regarding novel techniques and new findings in the molecular regulation of intestinal HCO3- transport in the different segments of the gut. We discuss human diseases with defects in intestinal HCO3- secretion and potential treatment strategies to increase luminal alkalinity. In the last part of the review, the cellular and organismal mechanisms for acid/base sensing in the intestinal tract are highlighted.


Assuntos
Bicarbonatos , Enterócitos , Animais , Camundongos , Humanos , Bicarbonatos/metabolismo , Transporte de Íons , Enterócitos/metabolismo , Membrana Celular/metabolismo , Secreções Corporais/metabolismo , Concentração de Íons de Hidrogênio , Regulador de Condutância Transmembrana em Fibrose Cística/metabolismo
2.
Anal Bioanal Chem ; 414(10): 3243-3255, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-34936009

RESUMO

The present paper describes a compact point of care (POC) optical device for therapeutic drug monitoring (TDM). The core of the device is a disposable plastic chip where an immunoassay for the determination of immunosuppressants takes place. The chip is designed in order to have ten parallel microchannels allowing the simultaneous detection of more than one analyte with replicate measurements. The device is equipped with a microfluidic system, which provides sample mixing with the necessary chemicals and pumping samples, reagents and buffers into the measurement chip, and with integrated thin film amorphous silicon photodiodes for the fluorescence detection. Submicrometric fluorescent magnetic particles are used as support in the immunoassay in order to improve the efficiency of the assay. In particular, the magnetic feature is used to concentrate the antibody onto the sensing layer leading to a much faster implementation of the assay, while the fluorescent feature is used to increase the optical signal leading to a larger optical dynamic change and consequently a better sensitivity and a lower limit of detection. The design and development of the whole integrated optical device are here illustrated. In addition, detection of mycophenolic acid and cyclosporine A in spiked solutions and in microdialysate samples from patient blood with the implemented device are reported.


Assuntos
Imunossupressores , Dispositivos Ópticos , Humanos , Imunoensaio , Microfluídica , Silício
3.
Int J Mol Sci ; 22(6)2021 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-33804674

RESUMO

Intra- and extracellular pH regulation is a pivotal function of all cells and tissues. Net outward transport of H+ is a prerequisite for normal physiological function, since a number of intracellular processes, such as metabolism and energy supply, produce acid. In tumor tissues, distorted pH regulation results in extracellular acidification and the formation of a hostile environment in which cancer cells can outcompete healthy local host cells. Cancer cells employ a variety of H+/HCO3--coupled transporters in combination with intra- and extracellular carbonic anhydrase (CA) isoforms, to alter intra- and extracellular pH to values that promote tumor progression. Many of the transporters could closely associate to CAs, to form a protein complex coined "transport metabolon". While transport metabolons built with HCO3--coupled transporters require CA catalytic activity, transport metabolons with monocarboxylate transporters (MCTs) operate independently from CA catalytic function. In this article, we assess some of the processes and functions of CAs for tumor pH regulation and discuss the role of intra- and extracellular pH regulation for cancer pathogenesis and therapeutic intervention.


Assuntos
Anidrases Carbônicas/metabolismo , Neoplasias/metabolismo , Prótons , Animais , Biomarcadores , Anidrases Carbônicas/genética , Suscetibilidade a Doenças , Descoberta de Drogas , Metabolismo Energético/efeitos dos fármacos , Humanos , Concentração de Íons de Hidrogênio , Espaço Intracelular/metabolismo , Bombas de Íon/genética , Bombas de Íon/metabolismo , Transporte de Íons/efeitos dos fármacos , Terapia de Alvo Molecular , Neoplasias/tratamento farmacológico , Neoplasias/etiologia , Neoplasias/patologia
4.
J Biol Chem ; 294(2): 593-607, 2019 01 11.
Artigo em Inglês | MEDLINE | ID: mdl-30446621

RESUMO

Monocarboxylate transporters (MCTs) mediate the proton-coupled exchange of high-energy metabolites, including lactate and pyruvate, between cells and tissues. The transport activity of MCT1, MCT2, and MCT4 can be facilitated by the extracellular carbonic anhydrase IV (CAIV) via a noncatalytic mechanism. Combining physiological measurements in HEK-293 cells and Xenopus oocytes with pulldown experiments, we analyzed the direct interaction between CAIV and the two MCT chaperones basigin (CD147) and embigin (GP70). Our results show that facilitation of MCT transport activity requires direct binding of CAIV to the transporters chaperones. We found that this binding is mediated by the highly conserved His-88 residue in CAIV, which is also the central residue of the enzyme's intramolecular proton shuttle, and a charged amino acid residue in the Ig1 domain of the chaperone. Although the position of the CAIV-binding site in the chaperone was conserved, the amino acid residue itself varied among different species. In human CD147, binding of CAIV was mediated by the negatively charged Glu-73 and in rat CD147 by the positively charged Lys-73. In rat GP70, we identified the positively charged Arg-130 as the binding site. Further analysis of the CAIV-binding site revealed that the His-88 in CAIV can either act as H donor or H acceptor for the hydrogen bond, depending on the charge of the binding residue in the chaperone. Our results suggest that the CAIV-mediated increase in MCT transport activity requires direct binding between CAIV-His-88 and a charged amino acid in the extracellular domain of the transporter's chaperone.


Assuntos
Basigina/metabolismo , Anidrase Carbônica IV/metabolismo , Glicoproteínas/metabolismo , Glicoproteínas de Membrana/metabolismo , Chaperonas Moleculares/metabolismo , Transportadores de Ácidos Monocarboxílicos/metabolismo , Mapas de Interação de Proteínas , Sequência de Aminoácidos , Animais , Basigina/química , Células HEK293 , Humanos , Proteínas de Membrana , Modelos Moleculares , Domínios Proteicos , Ratos , Alinhamento de Sequência , Simportadores/metabolismo , Xenopus
5.
Br J Cancer ; 122(2): 157-167, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31819195

RESUMO

Alterations in tumour metabolism and acid/base regulation result in the formation of a hostile environment, which fosters tumour growth and metastasis. Acid/base homoeostasis in cancer cells is governed by the concerted interplay between carbonic anhydrases (CAs) and various transport proteins, which either mediate proton extrusion or the shuttling of acid/base equivalents, such as bicarbonate and lactate, across the cell membrane. Accumulating evidence suggests that some of these transporters interact both directly and functionally with CAIX to form a protein complex coined the 'transport metabolon'. Transport metabolons formed between bicarbonate transporters and CAIX require CA catalytic activity and have a function in cancer cell migration and invasion. Another type of transport metabolon is formed by CAIX and monocarboxylate transporters. In this complex, CAIX functions as a proton antenna for the transporter, which drives the export of lactate and protons from the cell. Since CAIX is almost exclusively expressed in cancer cells, these transport metabolons might serve as promising targets to interfere with tumour pH regulation and energy metabolism. This review provides an overview of the current state of research on the function of CAIX in tumour acid/base transport and discusses how CAIX transport metabolons could be exploited in modern cancer therapy.


Assuntos
Antígenos de Neoplasias/genética , Anidrase Carbônica IX/genética , Metabolismo Energético/genética , Neoplasias/genética , Antígenos de Neoplasias/metabolismo , Anidrase Carbônica IX/metabolismo , Movimento Celular/genética , Proliferação de Células/genética , Regulação Neoplásica da Expressão Gênica/genética , Humanos , Concentração de Íons de Hidrogênio , Invasividade Neoplásica/genética , Invasividade Neoplásica/patologia , Metástase Neoplásica , Neoplasias/metabolismo , Neoplasias/patologia
6.
EMBO Rep ; 18(12): 2172-2185, 2017 12.
Artigo em Inglês | MEDLINE | ID: mdl-29066459

RESUMO

Elevated amino acid catabolism is common to many cancers. Here, we show that glioblastoma are excreting large amounts of branched-chain ketoacids (BCKAs), metabolites of branched-chain amino acid (BCAA) catabolism. We show that efflux of BCKAs, as well as pyruvate, is mediated by the monocarboxylate transporter 1 (MCT1) in glioblastoma. MCT1 locates in close proximity to BCKA-generating branched-chain amino acid transaminase 1, suggesting possible functional interaction of the proteins. Using in vitro models, we demonstrate that tumor-excreted BCKAs can be taken up and re-aminated to BCAAs by tumor-associated macrophages. Furthermore, exposure to BCKAs reduced the phagocytic activity of macrophages. This study provides further evidence for the eminent role of BCAA catabolism in glioblastoma by demonstrating that tumor-excreted BCKAs might have a direct role in tumor immune suppression. Our data further suggest that the anti-proliferative effects of MCT1 knockdown observed by others might be related to the blocked excretion of BCKAs.


Assuntos
Aminoácidos de Cadeia Ramificada/metabolismo , Glioblastoma/fisiopatologia , Macrófagos/fisiologia , Transportadores de Ácidos Monocarboxílicos/metabolismo , Simportadores/metabolismo , Transporte Biológico , Contagem de Células , Linhagem Celular Tumoral , Glioblastoma/imunologia , Humanos , Técnicas In Vitro , Macrófagos/imunologia , Macrófagos/patologia , Transportadores de Ácidos Monocarboxílicos/antagonistas & inibidores , Transportadores de Ácidos Monocarboxílicos/deficiência , Transportadores de Ácidos Monocarboxílicos/genética , Proteínas Musculares/deficiência , Proteínas Musculares/genética , Fagocitose , Fenótipo , Ácido Pirúvico/metabolismo , Simportadores/antagonistas & inibidores , Simportadores/genética , Transaminases
7.
Arch Toxicol ; 92(3): 1133-1149, 2018 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-29209748

RESUMO

The metabolic activity of hepatocytes is a central prerequisite for drug activity and a key element in drug-drug interaction. This central role in metabolism largely depends on the activity of the cytochrome P450 (CYP450) enzyme family, which is not only dependent on liver cell maturation but is also controlled in response to drug and chemical exposure. Here, we report the use of VividDye fluorogenic CYP450 substrates to directly measure and continuously monitor metabolic activity in living hepatocytes. We observed time- and dose-dependent correlation in response to established and putative CYP450 inducers acting through the aryl hydrocarbon receptor and drug combinations. Using repetitive addition of VividDye fluorogenic substrate on a daily basis, we demonstrated the new application of VividDye for monitoring the maturation and dedifferentiation of hepatic cells. Despite a lack of high specificity for individual CYP450 isoenzymes, our approach enables continuous monitoring of metabolic activity in living cells with no need to disrupt cultivation. Our assay can be integrated in in vitro liver-mimetic models for on-line monitoring and thus should enhance the reliability of these tissue model systems.


Assuntos
Bioensaio/métodos , Compostos Cromogênicos/metabolismo , Sistema Enzimático do Citocromo P-450/metabolismo , Hepatócitos/enzimologia , Animais , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Bioensaio/instrumentação , Diferenciação Celular/efeitos dos fármacos , Células Cultivadas , Sistema Enzimático do Citocromo P-450/análise , Indução Enzimática/efeitos dos fármacos , Corantes Fluorescentes/análise , Células Hep G2 , Hepatócitos/efeitos dos fármacos , Hepatócitos/fisiologia , Humanos , Indóis/farmacologia , Dispositivos Lab-On-A-Chip , Masculino , Camundongos Endogâmicos C57BL , Oximas , Dibenzodioxinas Policloradas/farmacologia , Receptores de Hidrocarboneto Arílico/genética , Receptores de Hidrocarboneto Arílico/metabolismo
8.
J Enzyme Inhib Med Chem ; 33(1): 1064-1073, 2018 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-29909747

RESUMO

Carbonic anhydrase (CA) IX is a hypoxia inducible enzyme that is highly expressed in solid tumours. Therefore, it has been considered as an anticancer target using specific chemical inhibitors. The nitroimidazoles DTP338 and DTP348 have been shown to inhibit CA IX in nanomolar range in vitro and reduce extracellular acidification in hypoxia, and impair tumour growth. We screened these compounds for toxicity using zebrafish embryos and measured their in vivo effects on human CA IX in Xenopus oocytes. In the toxicity screening, the LD50 for both compounds was 3.5 mM. Neither compound showed apparent toxicity below 300 µM concentration. Above this concentration, both compounds altered the movement of zebrafish larvae. The IC50 was 0.14 ± 0.02 µM for DTP338 and 19.26 ± 1.97 µM for DTP348, suggesting that these compounds efficiently inhibit CA IX in vivo. Our results suggest that these compounds can be developed as drugs for cancer therapy.


Assuntos
Anidrase Carbônica IX/antagonistas & inibidores , Inibidores da Anidrase Carbônica/farmacologia , Nitroimidazóis/farmacologia , Oócitos/efeitos dos fármacos , Animais , Antibacterianos/síntese química , Antibacterianos/química , Antibacterianos/farmacologia , Anidrase Carbônica IX/metabolismo , Inibidores da Anidrase Carbônica/síntese química , Inibidores da Anidrase Carbônica/química , Relação Dose-Resposta a Droga , Humanos , Testes de Sensibilidade Microbiana , Estrutura Molecular , Mycobacterium marinum/efeitos dos fármacos , Nitroimidazóis/síntese química , Nitroimidazóis/química , Oócitos/metabolismo , Relação Estrutura-Atividade , Xenopus , Peixe-Zebra/embriologia
9.
J Biol Chem ; 290(49): 29202-16, 2015 Dec 04.
Artigo em Inglês | MEDLINE | ID: mdl-26487715

RESUMO

HCO3 (-) is a key factor in the regulation of sperm motility. High concentrations of HCO3 (-) in the female genital tract induce an increase in sperm beat frequency, which speeds progress of the sperm through the female reproductive tract. Carbonic anhydrases (CA), which catalyze the reversible hydration of CO2 to HCO3 (-), represent potential candidates in the regulation of the HCO3 (-) homeostasis in sperm and the composition of the male and female genital tract fluids. We show that two CA isoforms, CAII and CAIV, are distributed along the epididymal epithelium and appear with the onset of puberty. Expression analyses reveal an up-regulation of CAII and CAIV in the different epididymal sections of the knockout lines. In sperm, we find that CAII is located in the principal piece, whereas CAIV is present in the plasma membrane of the entire sperm tail. CAII and CAIV single knockout animals display an imbalanced HCO3 (-) homeostasis, resulting in substantially reduced sperm motility, swimming speed, and HCO3 (-)-enhanced beat frequency. The CA activity remaining in the sperm of CAII- and CAIV-null mutants is 35% and 68% of that found in WT mice. Sperm of the double knockout mutant mice show responses to stimulus by HCO3 (-) or CO2 that were delayed in onset and reduced in magnitude. In comparison with sperm from CAII and CAIV double knockout animals, pharmacological loss of CAIV in sperm from CAII knockout animals, show an even lower response to HCO3 (-). These results suggest that CAII and CAIV are required for optimal fertilization.


Assuntos
Anidrase Carbônica II/metabolismo , Anidrase Carbônica IV/metabolismo , Fertilidade , Espermatozoides/enzimologia , Animais , Catálise , Membrana Celular/enzimologia , Feminino , Fertilização , Perfilação da Expressão Gênica , Regulação da Expressão Gênica , Homeostase , Concentração de Íons de Hidrogênio , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Camundongos Transgênicos , Fenótipo , Motilidade dos Espermatozoides
10.
J Biol Chem ; 290(7): 4476-86, 2015 Feb 13.
Artigo em Inglês | MEDLINE | ID: mdl-25561737

RESUMO

Proton-coupled monocarboxylate transporters (MCTs) mediate the exchange of high energy metabolites like lactate between different cells and tissues. We have reported previously that carbonic anhydrase II augments transport activity of MCT1 and MCT4 by a noncatalytic mechanism, while leaving transport activity of MCT2 unaltered. In the present study, we combined electrophysiological measurements in Xenopus oocytes and pulldown experiments to analyze the direct interaction between carbonic anhydrase II (CAII) and MCT1, MCT2, and MCT4, respectively. Transport activity of MCT2-WT, which lacks a putative CAII-binding site, is not augmented by CAII. However, introduction of a CAII-binding site into the C terminus of MCT2 resulted in CAII-mediated facilitation of MCT2 transport activity. Interestingly, introduction of three glutamic acid residues alone was not sufficient to establish a direct interaction between MCT2 and CAII, but the cluster had to be arranged in a fashion that allowed access to the binding moiety in CAII. We further demonstrate that functional interaction between MCT4 and CAII requires direct binding of the enzyme to the acidic cluster (431)EEE in the C terminus of MCT4 in a similar fashion as previously shown for binding of CAII to the cluster (489)EEE in the C terminus of MCT1. In CAII, binding to MCT1 and MCT4 is mediated by a histidine residue at position 64. Taken together, our results suggest that facilitation of MCT transport activity by CAII requires direct binding between histidine 64 in CAII and a cluster of glutamic acid residues in the C terminus of the transporter that has to be positioned in surroundings that allow access to CAII.


Assuntos
Anidrase Carbônica II/metabolismo , Transportadores de Ácidos Monocarboxílicos/metabolismo , Oócitos/metabolismo , Sequência de Aminoácidos , Animais , Sítios de Ligação , Transporte Biológico , Anidrase Carbônica II/genética , Eletrofisiologia , Humanos , Concentração de Íons de Hidrogênio , Dados de Sequência Molecular , Transportadores de Ácidos Monocarboxílicos/genética , Mutagênese Sítio-Dirigida , Mutação/genética , Oócitos/citologia , Ligação Proteica , Isoformas de Proteínas , Ratos , Homologia de Sequência de Aminoácidos , Xenopus laevis/crescimento & desenvolvimento , Xenopus laevis/metabolismo
11.
J Enzyme Inhib Med Chem ; 31(sup4): 38-44, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27557419

RESUMO

Human carbonic anhydrase IX (CA IX) is overexpressed in the most aggressive and invasive tumors. Therefore, CA IX has become the promising antitumor drug target. Three inhibitors have been shown to selectively and with picomolar affinity inhibit human recombinant CA IX. Their inhibitory potencies were determined for the CA IX, CA II, CA IV and CA XII in Xenopus oocytes and MDA-MB-231 cancer cells. The inhibition IC50 value of microelectrode-monitored intracellular and extracellular acidification reached 15 nM for CA IX, but with no effect on CA II expressed in Xenopus oocytes. Results were confirmed by mass spectrometric gas analysis of lysed oocytes, when an inhibitory effect on CA IX catalytic activity was found after the injection of 1 nM VD11-4-2. Moreover, VD11-4-2 inhibited CA activity in MDA-MB-231 cancer cells at nanomolar concentrations. This combination of high selectivity and potency renders VD11-4-2, an auspicious therapeutic drug for target-specific tumor therapy.


Assuntos
Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/enzimologia , Anidrase Carbônica IX/antagonistas & inibidores , Inibidores da Anidrase Carbônica/farmacologia , Oócitos/enzimologia , Xenopus laevis , Animais , Anidrase Carbônica IX/metabolismo , Inibidores da Anidrase Carbônica/síntese química , Inibidores da Anidrase Carbônica/química , Linhagem Celular Tumoral , Relação Dose-Resposta a Droga , Feminino , Humanos , Estrutura Molecular , Relação Estrutura-Atividade
12.
Proc Natl Acad Sci U S A ; 110(4): 1494-9, 2013 Jan 22.
Artigo em Inglês | MEDLINE | ID: mdl-23297198

RESUMO

Soluble cytosolic carbonic anhydrases (CAs) are well known to participate in pH regulation of the cytoplasm of mammalian cells. Membrane-bound CA isoforms--such as isoforms IV, IX, XII, XIV, and XV--also catalyze the reversible conversion of carbon dioxide to protons and bicarbonate, but at the extracellular face of the cell membrane. When human CA isoform IV was heterologously expressed in Xenopus oocytes, we observed, by measuring H(+) at the outer face of the cell membrane and in the cytosol with ion-selective microelectrodes, not only extracellular catalytic CA activity but also robust intracellular activity. CA IV expression in oocytes was confirmed by immunocytochemistry, and CA IV activity measured by mass spectrometry. Extra- and intracellular catalytic activity of CA IV could be pharmacologically dissected using benzolamide, the CA inhibitor, which is relatively slowly membrane-permeable. In acute cerebellar slices of mutant mice lacking CA IV, cytosolic H(+) shifts of granule cells following CO(2) removal/addition were significantly slower than in wild-type mice. Our results suggest that membrane-associated CA IV contributes robust catalytic activity intracellularly, and that this activity participates in regulating H(+) dynamics in the cytosol, both in injected oocytes and in mouse neurons.


Assuntos
Anidrase Carbônica IV/metabolismo , Animais , Benzolamida/farmacologia , Anidrase Carbônica II/antagonistas & inibidores , Anidrase Carbônica II/genética , Anidrase Carbônica II/metabolismo , Anidrase Carbônica IV/antagonistas & inibidores , Anidrase Carbônica IV/deficiência , Anidrase Carbônica IV/genética , Inibidores da Anidrase Carbônica/farmacologia , Cerebelo/citologia , Cerebelo/enzimologia , Citosol/enzimologia , Líquido Extracelular/enzimologia , Feminino , Proteínas Ligadas por GPI/genética , Proteínas Ligadas por GPI/metabolismo , Humanos , Concentração de Íons de Hidrogênio , Líquido Intracelular/enzimologia , Camundongos , Camundongos Knockout , Neurônios/enzimologia , Oócitos/enzimologia , RNA Complementar/genética , Proteínas Recombinantes/antagonistas & inibidores , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Xenopus laevis
13.
J Biol Chem ; 289(5): 2765-75, 2014 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-24338019

RESUMO

Proton-coupled monocarboxylate transporters (MCTs) are carriers of high-energy metabolites such as lactate, pyruvate, and ketone bodies and are expressed in most tissues. It has previously been shown that transport activity of MCT1 and MCT4 is enhanced by the cytosolic carbonic anhydrase II (CAII) independent of its catalytic activity. We have now studied the influence of the extracellular, membrane-bound CAIV on transport activity of MCT1/4, heterologously expressed in Xenopus oocytes. Coexpression of CAIV with MCT1 and MCT4 resulted in a significant increase in MCT transport activity, even in the nominal absence of CO2/HCO3(-). CAIV-mediated augmentation of MCT activity was independent of the CAIV catalytic function, since application of the CA-inhibitor ethoxyzolamide or coexpression of the catalytically inactive mutant CAIV-V165Y did not suppress CAIV-mediated augmentation of MCT transport activity. The interaction required CAIV at the extracellular surface, since injection of CAIV protein into the oocyte cytosol did not augment MCT transport function. The effects of cytosolic CAII (injected as protein) and extracellular CAIV (expressed) on MCT transport activity, were additive. Our results suggest that intra- and extracellular carbonic anhydrases can work in concert to ensure rapid shuttling of metabolites across the cell membrane.


Assuntos
Anidrase Carbônica IV/metabolismo , Corpos Cetônicos/metabolismo , Ácido Láctico/metabolismo , Transportadores de Ácidos Monocarboxílicos/metabolismo , Proteínas Musculares/metabolismo , Ácido Pirúvico/metabolismo , Simportadores/metabolismo , Animais , Transporte Biológico/fisiologia , Anidrase Carbônica II/metabolismo , Anidrase Carbônica IV/genética , Citosol/metabolismo , Espaço Extracelular/metabolismo , Humanos , Concentração de Íons de Hidrogênio , Proteínas de Membrana/metabolismo , Transportadores de Ácidos Monocarboxílicos/genética , Proteínas Musculares/genética , Oócitos/fisiologia , Isótopos de Oxigênio/farmacocinética , Ratos , Simportadores/genética , Xenopus
14.
Pflugers Arch ; 467(7): 1469-1480, 2015 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-25118990

RESUMO

Blood-derived lactate is a precious energy substrate for the heart muscle. Lactate is transported into cardiomyocytes via monocarboxylate transporters (MCTs) together with H(+), which couples lactate uptake to cellular pH regulation. In this study, we have investigated how the interplay between different acid/base transporters and carbonic anhydrases (CA), which catalyze the reversible hydration of CO2, modulates the uptake of lactate into isolated mouse cardiomyocytes. Lactate transport was estimated both as lactate-induced acidification and as changes in intracellular lactate levels measured with a newly developed Förster resonance energy transfer (FRET) nanosensor. Recordings of intracellular pH showed an increase in the rate of lactate-induced acidification when CA was inhibited by 6-ethoxy-2-benzothiazolesulfonamide (EZA), while direct measurements of lactate flux demonstrated a decrease in MCT transport activity, when CA was inhibited. The data indicate that catalytic activity of extracellular CA increases lactate uptake and counteracts intracellular lactate-induced acidification. We propose a hypothetical model, in which HCO3 (-), formed from cell-derived CO2 at the outer surface of the cardiomyocyte plasma membrane by membrane-anchored, extracellular CA, is transported into the cell via Na(+)/HCO3 (-) cotransport to counteract intracellular acidification, while the remaining H(+) stabilizes extracellular pH at the surface of the plasma membrane during MCT activity to enhance lactate influx into cardiomyocytes.


Assuntos
Anidrases Carbônicas/metabolismo , Ácido Láctico/metabolismo , Transportadores de Ácidos Monocarboxílicos/metabolismo , Miócitos Cardíacos/metabolismo , Simportadores de Sódio-Bicarbonato/metabolismo , Simportadores/metabolismo , Animais , Benzotiazóis/farmacologia , Bicarbonatos/metabolismo , Técnicas Biossensoriais , Inibidores da Anidrase Carbônica/farmacologia , Células Cultivadas , Transferência Ressonante de Energia de Fluorescência , Concentração de Íons de Hidrogênio , Camundongos , Camundongos Endogâmicos C57BL , Transportadores de Ácidos Monocarboxílicos/antagonistas & inibidores , Miócitos Cardíacos/efeitos dos fármacos , Simportadores de Sódio-Bicarbonato/antagonistas & inibidores , Sulfonamidas/farmacologia , Simportadores/antagonistas & inibidores
15.
Subcell Biochem ; 75: 105-34, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24146377

RESUMO

Carbonic anhydrases (CAs) have not only been identified as ubiquitous enzymes catalyzing the fast reversible hydration of carbon dioxide to generate or consume protons and bicarbonate, but also as intra- and extracellular proteins, which facilitate transport function of many acid/base transporting membrane proteins, coined 'transport metabolon'. Functional interaction between CAs and acid/base transporters, such as chloride/bicarbonate exchanger (AE), sodium-bicarbonate cotransporter (NBC) and sodium/hydrogen exchanger (NHE) has been shown to require both catalytic CA activity as well as direct binding of the enzyme to specific sites on the transporter. In contrast, functional interaction between different CA isoforms and lactate-proton-cotransporting monocarboxylate transporters (MCT) has been found to be isoform-specific and independent of CA catalytic activity, but seems to require an intramolecular proton shuttle within the enzyme. In this chapter, we review the various types of interactions between acid/base-coupled membrane carriers and different CA isoforms, as studied in vitro, in intact Xenopus oocytes, and in various mammalian cell types. Furthermore, we discuss recent findings that indicate the significance of these 'transport metabolons' for normal cell functions.


Assuntos
Bicarbonatos/metabolismo , Anidrases Carbônicas/química , Anidrases Carbônicas/metabolismo , Proteínas de Membrana Transportadoras/metabolismo , Animais , Transporte Biológico , Anidrases Carbônicas/genética , Catálise , Ácido Láctico/metabolismo , Proteínas de Membrana Transportadoras/química , Mapas de Interação de Proteínas/genética , Prótons , Simportadores de Sódio-Bicarbonato/química , Simportadores de Sódio-Bicarbonato/metabolismo
16.
Biomed Microdevices ; 16(1): 163-72, 2014 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-24091714

RESUMO

We report on a cartridge based platform for complex immunoassay formats that allows for flexible adaption of individual steps. It is a sample-to-answer system which is quantitative as well as sensitive. The target molecules are detected through a magnetic bead-based fluorescence sandwich immunoassay. The beads both constitute the solid phase for immobilizing capture molecules and are used for magnetic field activated incubation. The injection molded cartridge comprises several chambers separated by capillary valves. Chambers contain the assay reagents, through which the beads are manipulated via externally applied magnetic fields. Active incubation is made possible by assembling the beads into microstirrers and systematically scanning through a chamber. The beads are transported by focusing them to form an aggregate which subsequently is dragged through the valves. Once the aggregate enters a chamber, it is re-dispersed and magnetic actuation is used to re-assemble the beads into microstirrers. The assay protocol involves an incubation of sample with antibody coated magnetic beads, followed by steps for washing or separation, labeling with fluorescent detection antibody and finally fluorescence detection. An interleukin-8 assay served as a model for evaluating the system and a concentration as low as 5 pg/mL (0.625 pM) was successfully detected. The platform shows potential to be developed into a diagnostic tool to be used in a point-of-care testing (PoCT) environment.


Assuntos
Imunoensaio/métodos , Anticorpos/análise , Desenho de Equipamento , Fluorescência , Humanos , Separação Imunomagnética/instrumentação , Interleucina-8/análise , Magnetismo , Técnicas Analíticas Microfluídicas/instrumentação , Técnicas Analíticas Microfluídicas/métodos , Reprodutibilidade dos Testes
17.
Proc Natl Acad Sci U S A ; 108(7): 3071-6, 2011 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-21282642

RESUMO

Carbonic anhydrases (CAs) catalyze the reversible hydration of CO(2) to HCO(3)(-) and H(+). The rate-limiting step in this reaction is the shuttle of protons between the catalytic center of the enzyme and the bulk solution. In carbonic anhydrase II (CAII), the fastest and most wide-spread isoform, this H(+) shuttle is facilitated by the side chain of His64, whereas CA isoforms such as carbonic anhydrase III (CAIII), which lack such a shuttle, have only low catalytic activity in vitro. By using heterologous protein expression in Xenopus oocytes, we tested the role of this intramolecular H(+) shuttle on CA activity in an intact cell. The data revealed that CAIII, shown in vitro to have ∼1,000-fold reduced activity as compared with CAII, displays significant catalytic activity in the intact cell. Furthermore, we tested the hypothesis that the H(+) shuttle in CAII itself can facilitate transport activity of the monocarboxylate transporters 1 and 4 (MCT1/4) independent of catalytic activity. Our results show that His64 is essential for the enhancement of lactate transport via MCT1/4, because a mutation of this residue to alanine (CAII-H64A) abolishes the CAII-induced increase in MCT1/4 activity. However, injection of 4-methylimidazole, which acts as an exogenous H(+) donor/acceptor, can restore the ability of CAII-H64A to enhance transport activity of MCT1/4. These findings support the hypothesis that the H(+) shuttle in CAII not only facilitates CAII catalytic activity but also can enhance activity of acid-/base-transporting proteins such as MCT1/4 in a direct, noncatalytic manner, possibly by acting as an "H(+)-collecting antenna."


Assuntos
Anidrase Carbônica III/metabolismo , Anidrase Carbônica II/metabolismo , Modelos Moleculares , Prótons , Animais , Bicarbonatos/metabolismo , Transporte Biológico/fisiologia , Western Blotting , Dióxido de Carbono/metabolismo , Anidrase Carbônica II/química , Anidrase Carbônica III/química , Catálise , Humanos , Concentração de Íons de Hidrogênio , Imidazóis , Ácido Láctico/metabolismo , Transportadores de Ácidos Monocarboxílicos/metabolismo , Oócitos/metabolismo , Xenopus
18.
Front Behav Neurosci ; 18: 1443912, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39100728

RESUMO

[This corrects the article DOI: 10.3389/fnbeh.2020.612430.].

19.
J Physiol ; 590(10): 2333-51, 2012 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-22451434

RESUMO

Rapid exchange of metabolites between different cell types is crucial for energy homeostasis of the brain. Besides glucose, lactate is a major metabolite in the brain and is primarily produced in astrocytes. In the present study, we report that carbonic anhydrase 2 (CAII) enhances both influx and efflux of lactate in mouse cerebellar astrocytes. The augmentation of lactate transport is independent of the enzyme's catalytic activity, but requires direct binding of CAII to the C-terminal of the monocarboxylate transporter MCT1, one of the major lactate/proton cotransporters in astrocytes and most tissues. By employing its intramolecular proton shuttle, CAII, bound to MCT1, can act as a 'proton collecting antenna' for the transporter, suppressing the formation of proton microdomains at the transporter-pore and thereby enhancing lactate flux. By this mechanism CAII could enhance transfer of lactate between astrocytes and neurons and thus provide the neurons with an increased supply of energy substrate.


Assuntos
Astrócitos/metabolismo , Anidrase Carbônica II/metabolismo , Cerebelo/metabolismo , Ácido Láctico/metabolismo , Transportadores de Ácidos Monocarboxílicos/metabolismo , Simportadores/metabolismo , Animais , Anidrase Carbônica II/deficiência , Anidrase Carbônica II/genética , Células Cultivadas , Feminino , Camundongos , Camundongos Knockout , Transportadores de Ácidos Monocarboxílicos/genética , Oócitos , RNA Interferente Pequeno/genética , Simportadores/genética , Xenopus laevis
20.
J Biol Chem ; 286(31): 27781-91, 2011 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-21680735

RESUMO

The ubiquitous enzyme carbonic anhydrase isoform II (CAII) has been shown to enhance transport activity of the proton-coupled monocarboxylate transporters MCT1 and MCT4 in a non-catalytic manner. In this study, we investigated the role of cytosolic CAII and of the extracellular, membrane-bound CA isoform IV (CAIV) on the lactate transport activity of the high-affinity monocarboxylate transporter MCT2, heterologously expressed in Xenopus oocytes. In contrast to MCT1 and MCT4, transport activity of MCT2 was not altered by CAII. However, coexpression of CAIV with MCT2 resulted in a significant increase in MCT2 transport activity when the transporter was coexpressed with its associated ancillary protein GP70 (embigin). The CAIV-mediated augmentation of MCT2 activity was independent of the catalytic activity of the enzyme, as application of the CA-inhibitor ethoxyzolamide or coexpressing the catalytically inactive mutant CAIV-V165Y did not suppress CAIV-mediated augmentation of MCT2 transport activity. Furthermore, exchange of His-88, mediating an intramolecular H(+)-shuttle in CAIV, to alanine resulted only in a slight decrease in CAIV-mediated augmentation of MCT2 activity. The data suggest that extracellular membrane-bound CAIV, but not cytosolic CAII, augments transport activity of MCT2 in a non-catalytic manner, possibly by facilitating a proton pathway other than His-88.


Assuntos
Anidrase Carbônica II/metabolismo , Anidrase Carbônica IV/metabolismo , Transportadores de Ácidos Monocarboxílicos/metabolismo , Animais , Sequência de Bases , Biotina/metabolismo , Primers do DNA , Humanos , Concentração de Íons de Hidrogênio , Imuno-Histoquímica , Reação em Cadeia da Polimerase , Transporte Proteico , Xenopus
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA