Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 32
Filtrar
1.
Mol Cell ; 64(4): 790-802, 2016 11 17.
Artigo em Inglês | MEDLINE | ID: mdl-27840028

RESUMO

Recent studies have revealed the importance of Ki-67 and the chromosome periphery in chromosome structure and segregation, but little is known about this elusive chromosome compartment. Here we used correlative light and serial block-face scanning electron microscopy, which we term 3D-CLEM, to model the entire mitotic chromosome complement at ultra-structural resolution. Prophase chromosomes exhibit a highly irregular surface appearance with a volume smaller than metaphase chromosomes. This may be because of the absence of the periphery, which associates with chromosomes only after nucleolar disassembly later in prophase. Indeed, the nucleolar volume almost entirely accounts for the extra volume found in metaphase chromosomes. Analysis of wild-type and Ki-67-depleted chromosomes reveals that the periphery comprises 30%-47% of the entire chromosome volume and more than 33% of the protein mass of isolated mitotic chromosomes determined by quantitative proteomics. Thus, chromatin makes up a surprisingly small percentage of the total mass of metaphase chromosomes.


Assuntos
Cromatina/ultraestrutura , Cromossomos/ultraestrutura , Metáfase , Microscopia Eletrônica de Varredura/métodos , Prófase , Linhagem Celular Transformada , Nucléolo Celular/química , Nucléolo Celular/ultraestrutura , Cromatina/química , Cromossomos/química , Expressão Gênica , Células HeLa , Histonas/genética , Histonas/metabolismo , Humanos , Antígeno Ki-67/genética , Antígeno Ki-67/metabolismo , Epitélio Pigmentado da Retina/química , Epitélio Pigmentado da Retina/metabolismo , Epitélio Pigmentado da Retina/ultraestrutura
2.
PLoS Pathog ; 16(11): e1009016, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-33216805

RESUMO

The opportunistic pathogen Streptococcus pneumoniae has dual lifestyles: one of an asymptomatic colonizer in the human nasopharynx and the other of a deadly pathogen invading sterile host compartments. The latter triggers an overwhelming inflammatory response, partly driven via pore forming activity of the cholesterol dependent cytolysin (CDC), pneumolysin. Although pneumolysin-induced inflammation drives person-to-person transmission from nasopharynx, the primary reservoir for pneumococcus, it also contributes to high mortality rates, creating a bottleneck that hampers widespread bacterial dissemination, thus acting as a double-edged sword. Serotype 1 ST306, a widespread pneumococcal clone, harbours a non-hemolytic variant of pneumolysin (Ply-NH). Performing crystal structure analysis of Ply-NH, we identified Y150H and T172I as key substitutions responsible for loss of its pore forming activity. We uncovered a novel inter-molecular cation-π interaction, governing formation of the transmembrane ß-hairpins (TMH) in the pore state of Ply, which can be extended to other CDCs. H150 in Ply-NH disrupts this interaction, while I172 provides structural rigidity to domain-3, through hydrophobic interactions, inhibiting TMH formation. Loss of pore forming activity enabled improved cellular invasion and autophagy evasion, promoting an atypical intracellular lifestyle for pneumococcus, a finding that was corroborated in in vivo infection models. Attenuation of inflammatory responses and tissue damage promoted tolerance of Ply-NH-expressing pneumococcus in the lower respiratory tract. Adoption of this altered lifestyle may be necessary for ST306 due to its limited nasopharyngeal carriage, with Ply-NH, aided partly by loss of its pore forming ability, facilitating a benign association of SPN in an alternative, intracellular host niche.


Assuntos
Adaptação Fisiológica , Inflamação/microbiologia , Mutação com Perda de Função , Infecções Pneumocócicas/microbiologia , Streptococcus pneumoniae/fisiologia , Estreptolisinas/metabolismo , Sequência de Aminoácidos , Animais , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Membrana Celular/microbiologia , Colesterol/metabolismo , Citoplasma/microbiologia , Feminino , Humanos , Camundongos , Modelos Estruturais , Perforina/genética , Perforina/metabolismo , Alinhamento de Sequência , Streptococcus pneumoniae/genética , Estreptolisinas/genética
3.
Small ; 16(46): e2003793, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-33103323

RESUMO

The generation of effective and safe nanoagents for biological applications requires their physicochemical characteristics to be tunable, and their cellular interactions to be well characterized. Here, the controlled synthesis is developed for preparing high-aspect ratio gold nanotubes (AuNTs) with tailorable wall thickness, microstructure, composition, and optical characteristics. The modulation of optical properties generates AuNTs with strong near infrared absorption. Surface modification enhances dispersibility of AuNTs in aqueous media and results in low cytotoxicity. The uptake and trafficking of these AuNTs by primary mesothelioma cells demonstrate their accumulation in a perinuclear distribution where they are confined initially in membrane-bound vesicles from which they ultimately escape to the cytosol. This represents the first study of the cellular interactions of high-aspect ratio 1D metal nanomaterials and will facilitate the rational design of plasmonic nanoconstructs as cytosolic nanoagents for potential diagnosis and therapeutic applications.


Assuntos
Mesotelioma , Nanoestruturas , Nanotubos , Citosol , Ouro , Humanos , Mesotelioma/tratamento farmacológico
4.
Toxicol Appl Pharmacol ; 403: 115163, 2020 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-32730777

RESUMO

During its clinical development fialuridine caused liver toxicity and the death of five patients. This case remains relevant due to the continued development of mechanistically-related compounds against a back-drop of simple in vitro models which remain limited for the preclinical detection of such delayed toxicity. Here, proteomic investigation of a differentiated, HepaRG, and proliferating, HepG2 cell model was utilised to confirm the presence of the hENT1 transporter, thymidine kinase-1 and -2 (TK1, TK2) and thymidylate kinase, all essential in order to reproduce the cellular activation and disposition of fialuridine in the clinic. Acute metabolic modification assays could only identify mitochondrial toxicity in HepaRG cells following extended dosing, 2 weeks. Toxic effects were observed around 10 µM, which is within a range of 10-15 X approximate Cmax. HepaRG cell death was accompanied by a significant decrease in mitochondrial DNA content, indicative of inhibition of mitochondrial replication, and a subsequent reduction in mitochondrial respiration and the activity of mitochondrial respiratory complexes, not replicated in HepG2 cells. The structural epimer of fialuridine, included as a pharmacological negative control, was shown to have no cytotoxic effects in HepaRG cells up to 4 weeks. Overall, these comparative studies demonstrate the HepaRG model has translational relevance for fialuridine toxicity and therefore may have potential in investigating the inhibition of mitochondrial replication over prolonged exposure for other toxicants.


Assuntos
Antivirais/farmacologia , Arabinofuranosiluracila/análogos & derivados , Hepatócitos/efeitos dos fármacos , Mitocôndrias/efeitos dos fármacos , Arabinofuranosiluracila/farmacologia , Linhagem Celular Tumoral , Replicação do DNA/efeitos dos fármacos , DNA Mitocondrial/fisiologia , Relação Dose-Resposta a Droga , Humanos , Mitocôndrias/fisiologia
5.
J Cell Sci ; 130(10): 1845-1855, 2017 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-28389579

RESUMO

Serial block face scanning electron microscopy (SBF-SEM) is a powerful method to analyze cells in 3D. Here, working at the resolution limit of the method, we describe a correlative light-SBF-SEM workflow to resolve microtubules of the mitotic spindle in human cells. We present four examples of uses for this workflow that are not practical by light microscopy and/or transmission electron microscopy. First, distinguishing closely associated microtubules within K-fibers; second, resolving bridging fibers in the mitotic spindle; third, visualizing membranes in mitotic cells, relative to the spindle apparatus; and fourth, volumetric analysis of kinetochores. Our workflow also includes new computational tools for exploring the spatial arrangement of microtubules within the mitotic spindle. We use these tools to show that microtubule order in mitotic spindles is sensitive to the level of TACC3 on the spindle.


Assuntos
Processamento de Imagem Assistida por Computador , Microscopia Eletrônica de Varredura/métodos , Microtúbulos/metabolismo , Fuso Acromático/metabolismo , Células HeLa , Humanos , Imageamento Tridimensional , Cinetocoros/metabolismo , Cinetocoros/ultraestrutura , Modelos Biológicos , Modelos Moleculares , Fuso Acromático/ultraestrutura
6.
Histochem Cell Biol ; 148(1): 3-12, 2017 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-28283744

RESUMO

Due to the physical and physiological properties of the blood-brain barrier (BBB), the transport of neurotherapeutics from blood to brain is still a pharmaceutical challenge. We previously conducted a series of experiments to explore the potential of the anti-transferrin receptor 8D3 monoclonal antibody (mAb) to transport neurotherapeutics across the BBB. In that study, gold nanoparticles (AuNPs) were coated with the 8D3 antibody and administered intravenously to mice. Transmission electron microscopy was used and a two-dimensional (2D) image analysis was performed to detect the AuNPs in the brain capillary endothelial cells (BCECs) and brain parenchyma. In the present work, we determined that serial block-face scanning electron microscopy (SBF-SEM) is a useful tool to study the transcytosis of these AuNPs across the BBB in three dimensions and we, therefore, applied it to gain more knowledge of their transcellular trafficking. The resulting 3D reconstructions provided additional information on the endocytic vesicles containing AuNPs and the endosomal processing that occurs inside BCECs. The passage from 2D to 3D analysis reinforced the trafficking model proposed in the 2D study, and revealed that the vesicles containing AuNPs are significantly larger and more complex than described in our 2D study. We also discuss tradeoffs of using this technique for our application, and conclude that together with other volume electron microscopy imaging techniques, SBF-SEM is a powerful approach that is worth of considering for studies of drug transport across the BBB.


Assuntos
Barreira Hematoencefálica/metabolismo , Barreira Hematoencefálica/ultraestrutura , Ouro/farmacocinética , Nanopartículas Metálicas/análise , Microscopia Eletrônica de Varredura , Animais , Anticorpos Monoclonais/administração & dosagem , Anticorpos Monoclonais/análise , Anticorpos Monoclonais/farmacocinética , Ouro/administração & dosagem , Injeções Intravenosas , Masculino , Nanopartículas Metálicas/administração & dosagem , Camundongos , Camundongos Endogâmicos ICR
7.
FASEB J ; 30(12): 4083-4097, 2016 12.
Artigo em Inglês | MEDLINE | ID: mdl-27601439

RESUMO

α1-Antitrypsin is a serine protease inhibitor produced in the liver that is responsible for the regulation of pulmonary inflammation. The commonest pathogenic gene mutation yields Z-α1-antitrypsin, which has a propensity to self-associate forming polymers that become trapped in inclusions of endoplasmic reticulum (ER). It is unclear whether these inclusions are connected to the main ER network in Z-α1-antitrypsin-expressing cells. Using live cell imaging, we found that despite inclusions containing an immobile matrix of polymeric α1-antitrypsin, small ER resident proteins can diffuse freely within them. Inclusions have many features to suggest they represent fragmented ER, and some are physically separated from the tubular ER network, yet we observed cargo to be transported between them in a cytosol-dependent fashion that is sensitive to N-ethylmaleimide and dependent on Sar1 and sec22B. We conclude that protein recycling occurs between ER inclusions despite their physical separation.-Dickens, J. A., Ordóñez, A., Chambers, J. E., Beckett, A. J., Patel, V., Malzer, E., Dominicus, C. S., Bradley, J., Peden, A. A., Prior, I. A., Lomas, D. A., Marciniak, S. J. The endoplasmic reticulum remains functionally connected by vesicular transport after its fragmentation in cells expressing Z-α1-antitrypsin.


Assuntos
Transporte Biológico/fisiologia , Retículo Endoplasmático/metabolismo , Fígado/metabolismo , alfa 1-Antitripsina/metabolismo , Animais , Transporte Biológico/genética , Células CHO , Células Cultivadas , Cricetulus , Mutação/genética , alfa 1-Antitripsina/genética
8.
Biochem J ; 465(3): 405-12, 2015 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-25370603

RESUMO

The inducers of acute pancreatitis trigger a prolonged increase in the cytosolic Ca(2+) concentration ([Ca(2+)]c), which is responsible for the damage to and eventual death of pancreatic acinar cells. Vacuolization is an important indicator of pancreatic acinar cell damage. Furthermore, activation of trypsinogen occurs in the endocytic vacuoles; therefore the vacuoles can be considered as 'initiating' organelles in the development of the cell injury. In the present study, we investigated the relationship between the formation of endocytic vacuoles and Ca(2+) influx developed in response to the inducers of acute pancreatitis [bile acid taurolithocholic acid 3-sulfate (TLC-S) and supramaximal concentration of cholecystokinin-8 (CCK)]. We found that the inhibitor of STIM (stromal interaction molecule)/Orai channels, GSK-7975A, effectively suppressed both the Ca(2+) influx (stimulated by inducers of pancreatitis) and the formation of endocytic vacuoles. Cell death induced by TLC-S or CCK was also inhibited by GSK-7975A. We documented the formation of endocytic vacuoles in response to store-operated Ca(2+) entry (SOCE) induced by thapsigargin [TG; inhibitor of sarcoplasmic/endoplasmic reticulum (ER) Ca(2+) pumps] and observed strong inhibition of TG-induced vacuole formation by GSK-7975A. Finally, we found that structurally-unrelated inhibitors of calpain suppress formation of endocytic vacuoles, suggesting that this Ca2+-dependent protease is a mediator between Ca(2+) elevation and endocytic vacuole formation.


Assuntos
Células Acinares/metabolismo , Cálcio/metabolismo , Pâncreas/citologia , Pâncreas/metabolismo , Vesículas Transportadoras/metabolismo , Vacúolos/metabolismo , Animais , Células Cultivadas , Camundongos
9.
J Cell Sci ; 126(Pt 20): 4553-9, 2013 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-23943869

RESUMO

Activating mutations in the K-Ras small GTPase are extensively found in human tumors. Although these mutations induce the generation of a constitutively GTP-loaded, active form of K-Ras, phosphorylation at Ser181 within the C-terminal hypervariable region can modulate oncogenic K-Ras function without affecting the in vitro affinity for its effector Raf-1. In striking contrast, K-Ras phosphorylated at Ser181 shows increased interaction in cells with the active form of Raf-1 and with p110α, the catalytic subunit of PI 3-kinase. Because the majority of phosphorylated K-Ras is located at the plasma membrane, different localization within this membrane according to the phosphorylation status was explored. Density-gradient fractionation of the plasma membrane in the absence of detergents showed segregation of K-Ras mutants that carry a phosphomimetic or unphosphorylatable serine residue (S181D or S181A, respectively). Moreover, statistical analysis of immunoelectron microscopy showed that both phosphorylation mutants form distinct nanoclusters that do not overlap. Finally, induction of oncogenic K-Ras phosphorylation - by activation of protein kinase C (PKC) - increased its co-clustering with the phosphomimetic K-Ras mutant, whereas (when PKC is inhibited) non-phosphorylated oncogenic K-Ras clusters with the non-phosphorylatable K-Ras mutant. Most interestingly, PI 3-kinase (p110α) was found in phosphorylated K-Ras nanoclusters but not in non-phosphorylated K-Ras nanoclusters. In conclusion, our data provide - for the first time - evidence that PKC-dependent phosphorylation of oncogenic K-Ras induced its segregation in spatially distinct nanoclusters at the plasma membrane that, in turn, favor activation of Raf-1 and PI 3-kinase.


Assuntos
Genes ras , Proteínas ras/genética , Proteínas ras/metabolismo , Membrana Celular/genética , Membrana Celular/metabolismo , Células HEK293 , Células HeLa , Humanos , Fosfatidilinositol 3-Quinases/metabolismo , Fosforilação , Proteínas Proto-Oncogênicas c-raf/metabolismo , Transdução de Sinais
10.
PLoS Biol ; 10(7): e1001361, 2012 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-22815649

RESUMO

The heparan sulfate (HS) chains of proteoglycans are a key regulatory component of the extracellular matrices of animal cells, including the pericellular matrix around the plasma membrane. In these matrices they regulate transport, gradient formation, and effector functions of over 400 proteins central to cell communication. HS from different matrices differs in its selectivity for its protein partners. However, there has been no direct test of how HS in the matrix regulates the transport of its partner proteins. We address this issue by single molecule imaging and tracking in fibroblast pericellular matrix of fibroblast growth factor 2 (FGF2), stoichiometrically labelled with small gold nanoparticles. Transmission electron microscopy and photothermal heterodyne imaging (PHI) show that the spatial distribution of the HS-binding sites for FGF2 in the pericellular matrix is heterogeneous over length scales ranging from 22 nm to several µm. Tracking of individual FGF2 by PHI in the pericellular matrix of living cells demonstrates that they undergo five distinct types of motion. They spend much of their time in confined motion (∼110 nm diameter), but they are not trapped and can escape by simple diffusion, which may be slow, fast, or directed. These substantial translocations (µm) cover distances far greater than the length of a single HS chain. Similar molecular motion persists in fixed cells, where the movement of membrane PGs is impeded. We conclude that FGF2 moves within the pericellular matrix by translocating from one HS-binding site to another. The binding sites on HS chains form non-random, heterogeneous networks. These promote FGF2 confinement or substantial translocation depending on their spatial organisation. We propose that this spatial organisation, coupled to the relative selectivity and the availability of HS-binding sites, determines the transport of FGF2 in matrices. Similar mechanisms are likely to underpin the movement of many other HS-binding effectors.


Assuntos
Fator 2 de Crescimento de Fibroblastos/metabolismo , Heparitina Sulfato/metabolismo , Sítios de Ligação , Fibroblastos/metabolismo , Microscopia Eletrônica de Transmissão , Nanopartículas , Fosforilação , Transporte Proteico
11.
J Cell Biol ; 223(11)2024 Nov 04.
Artigo em Inglês | MEDLINE | ID: mdl-39186086

RESUMO

Chromosome compaction is a key feature of mitosis and critical for accurate chromosome segregation. However, a precise quantitative analysis of chromosome geometry during mitotic progression is lacking. Here, we use volume electron microscopy to map, with nanometer precision, chromosomes from prometaphase through telophase in human RPE1 cells. During prometaphase, chromosomes acquire a smoother surface, their arms shorten, and the primary centromeric constriction is formed. The chromatin is progressively compacted, ultimately reaching a remarkable nucleosome concentration of over 750 µM in late prometaphase that remains relatively constant during metaphase and early anaphase. Surprisingly, chromosomes then increase their volume in late anaphase prior to deposition of the nuclear envelope. The plateau of total chromosome volume from late prometaphase through early anaphase described here is consistent with proposals that the final stages of chromatin condensation in mitosis involve a limit density, such as might be expected for a process involving phase separation.


Assuntos
Anáfase , Nucleossomos , Prometáfase , Nucleossomos/metabolismo , Nucleossomos/ultraestrutura , Nucleossomos/genética , Humanos , Linhagem Celular , Cromossomos Humanos/metabolismo , Cromossomos Humanos/genética , Cromatina/metabolismo , Cromatina/genética , Mitose , Centrômero/metabolismo , Centrômero/ultraestrutura , Centrômero/genética
12.
bioRxiv ; 2024 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-38659940

RESUMO

During mitosis, interphase chromatin is rapidly converted into rod-shaped mitotic chromosomes. Using Hi-C, imaging, proteomics and polymer modeling, we determine how the activity and interplay between loop-extruding SMC motors accomplishes this dramatic transition. Our work reveals rules of engagement for SMC complexes that are critical for allowing cells to refold interphase chromatin into mitotic chromosomes. We find that condensin disassembles interphase chromatin loop organization by evicting or displacing extrusive cohesin. In contrast, condensin bypasses cohesive cohesins, thereby maintaining sister chromatid cohesion while separating the sisters. Studies of mitotic chromosomes formed by cohesin, condensin II and condensin I alone or in combination allow us to develop new models of mitotic chromosome conformation. In these models, loops are consecutive and not overlapping, implying that condensins do not freely pass one another but stall upon encountering each other. The dynamics of Hi-C interactions and chromosome morphology reveal that during prophase loops are extruded in vivo at ~1-3 kb/sec by condensins as they form a disordered discontinuous helical scaffold within individual chromatids.

13.
Biochem Soc Trans ; 41(1): 79-83, 2013 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-23356262

RESUMO

Ras GTPases are important regulators of pathways controlling proliferation, differentiation and transformation. Three ubiquitously expressed almost identical Ras genes are not functionally redundant; this has been attributed to their distinctive trafficking and localization profiles. A palmitoylation cycle controls the correct compartmentalization of H-Ras and N-Ras. We review recent data that reveal how this cycle can be regulated by membrane organization to influence the spatiotemporal signalling of Ras.


Assuntos
Lipoilação , Ácido Palmítico/metabolismo , Isoformas de Proteínas/metabolismo , Proteínas ras/metabolismo , Sequência de Aminoácidos , Membrana Celular/metabolismo , Dados de Sequência Molecular , Isoformas de Proteínas/química , Isoformas de Proteínas/genética , Transporte Proteico , Homologia de Sequência de Aminoácidos , Transdução de Sinais , Proteínas ras/química , Proteínas ras/genética
14.
Cell Death Dis ; 13(5): 436, 2022 05 04.
Artigo em Inglês | MEDLINE | ID: mdl-35508606

RESUMO

The recruitment of DRP1 to mitochondrial membranes prior to fission is facilitated by the wrapping of endoplasmic reticulum (ER) membranes around the mitochondria. To investigate the complex interplay between the ER membranes and DRP1 in the context of mitochondrial structure and function, we downregulate two key ER shaping proteins, RTN4 and CLIMP-63, and demonstrate pronounced mitochondrial hyperfusion and reduced ER-mitochondria contacts, despite their differential regulation of ER architecture. Although mitochondrial recruitment of DRP1 is unaltered in cells lacking RTN4 or CLIMP-63, several aspects of mitochondrial function, such as mtDNA-encoded translation, respiratory capacity and apoptosis are significantly hampered. Further mechanistic studies reveal that CLIMP-63 is required for cristae remodeling (OPA1 proteolysis) and DRP1-mediated mitochondrial fission, whereas both RTN4 and CLIMP-63 regulate the recruitment of BAX to ER and mitochondrial membranes to enable cytochrome c release and apoptosis, thereby performing novel and distinct roles in the regulation of mitochondrial structure and function.


Assuntos
Dinaminas , Mitocôndrias , Apoptose/genética , Dinaminas/metabolismo , Metabolismo Energético , Mitocôndrias/metabolismo , Dinâmica Mitocondrial , Proteínas Mitocondriais/genética , Proteínas Mitocondriais/metabolismo
15.
Anal Methods ; 14(37): 3661-3670, 2022 09 29.
Artigo em Inglês | MEDLINE | ID: mdl-36066093

RESUMO

Equine osteoarthritis is a chronic degenerative disease of the articular joint, characterised by cartilage degradation resulting in pain and reduced mobility and thus is a prominent equine welfare concern. Diagnosis is usually at a late stage through clinical examination and radiographic imaging, whilst treatment is symptomatic not curative. Extracellular vesicles are nanoparticles that are involved in intercellular communication. The objective of this study was to investigate the feasibility of Raman and Optical Photothermal Infrared Spectroscopies to detect osteoarthritis using plasma-derived extracellular vesicles, specifically differentiating extracellular vesicles in diseased and healthy controls within the parameters of the techniques used. Plasma samples were derived from thoroughbred racehorses. A total of 14 samples were selected (control; n = 6 and diseased; n = 8). Extracellular vesicles were isolated using differential ultracentrifugation and characterised using nanoparticle tracking analysis, transmission electron microscopy, and human tetraspanin chips. Samples were then analysed using combined Raman and Optical Photothermal Infrared Spectroscopies. Infrared spectra were collected between 950-1800 cm-1. Raman spectra had bands between the wavelengths of 900-1800 cm-1 analysed. Spectral data for both Raman and Optical Photothermal Infrared Spectroscopy were used to generate clustering via principal components analysis and classification models were generated using partial least squared discriminant analysis in order to characterize the techniques' ability to distinguish diseased samples. Optical Photothermal Infrared Spectroscopy could differentiate osteoarthritic extracellular vesicles from healthy with good classification (93.4% correct classification rate) whereas Raman displayed poor classification (correct classification rate = -64.3%). Inspection of the infrared spectra indicated that plasma-derived extracellular vesicles from osteoarthritic horses contained increased signal for proteins, lipids and nucleic acids. For the first time we demonstrated the ability to use optical photothermal infrared spectroscopy combined with Raman spectroscopy to interrogate extracellular vesicles and osteoarthritis-related samples. Optical Photothermal Infrared Spectroscopy was superior to Raman in this study, and could distinguish osteoarthritis samples, suggestive of its potential use diagnostically to identify osteoarthritis in equine patients. This study demonstrates the potential of Raman and Optical Photothermal Infrared Spectroscopy to be used as a future diagnostic tool in clinical practice, with the capacity to detect changes in extracellular vesicles from clinically derived samples.


Assuntos
Vesículas Extracelulares , Ácidos Nucleicos , Osteoartrite , Animais , Cavalos , Humanos , Lipídeos , Osteoartrite/diagnóstico , Osteoartrite/veterinária , Espectroscopia de Luz Próxima ao Infravermelho/métodos
16.
Nanomaterials (Basel) ; 12(4)2022 Feb 18.
Artigo em Inglês | MEDLINE | ID: mdl-35215010

RESUMO

Surface engineering is a promising strategy to limit or prevent the formation of biofilms. The use of topographic cues to influence early stages of biofilm formationn has been explored, yet many fundamental questions remain unanswered. In this work, we develop a topological model supported by direct experimental evidence, which is able to explain the effect of local topography on the fate of bacterial micro-colonies of Staphylococcus spp. We demonstrate how topological memory at the single-cell level, characteristic of this genus of Gram-positive bacteria, can be exploited to influence the architecture of micro-colonies and the average number of surface anchoring points over nano-patterned surfaces, formed by vertically aligned silicon nanowire arrays that can be reliably produced on a commercial scale, providing an excellent platform to investigate the effect of topography on the early stages of Staphylococcus spp. colonisation. The surfaces are not intrinsically antimicrobial, yet they delivered a topography-based bacteriostatic effect and a significant disruption of the local morphology of micro-colonies at the surface. The insights from this work could open new avenues towards designed technologies for biofilm engineering and prevention, based on surface topography.

17.
NPJ Biofilms Microbiomes ; 7(1): 51, 2021 06 21.
Artigo em Inglês | MEDLINE | ID: mdl-34155220

RESUMO

In this work, we introduce a one-step strategy that is suitable for continuous flow manufacturing of antimicrobial PDMS materials. The process is based on the intrinsic capacity of PDMS to react to certain organic solvents, which enables the incorporation of antimicrobial actives such as salicylic acid (SA), which has been approved for use in humans within pharmaceutical products. By combining different spectroscopic and imaging techniques, we show that the surface properties of PDMS remain unaffected while high doses of the SA are loaded inside the PDMS matrix. The SA can be subsequently released under physiological conditions, delivering a strong antibacterial activity. Furthermore, encapsulation of SA inside the PDMS matrix ensured a diffusion-controlled release that was tracked by spatially resolved Raman spectroscopy, Attenuated Total Reflectance IR (ATR-IR), and UV-Vis spectroscopy. The biological activity of the new material was evaluated directly at the surface and in the planktonic state against model pathogenic bacteria, combining confocal laser scanning microscopy, electron microscopy, and cell viability assays. The results showed complete planktonic inhibition for clinically relevant strains of Staphylococcus aureus and Escherichia coli, and a reduction of up to 4 orders of magnitude for viable sessile cells, demonstrating the efficacy of these surfaces in preventing the initial stages of biofilm formation. Our approach adds a new option to existing strategies for the antimicrobial functionalisation of a wide range of products such as catheters, wound dressings and in-dwelling medical devices based on PDMS.


Assuntos
Antibacterianos/química , Antibacterianos/farmacologia , Dimetilpolisiloxanos , Nylons , Ácido Salicílico , Silicones , Antibacterianos/síntese química , Técnicas de Química Sintética , Dimetilpolisiloxanos/química , Liberação Controlada de Fármacos , Humanos , Testes de Sensibilidade Microbiana , Estrutura Molecular , Nylons/química , Ácido Salicílico/química , Silicones/química , Análise Espectral , Propriedades de Superfície
18.
Viruses ; 13(3)2021 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-33804216

RESUMO

In recent years, novel lineages of invasive non-typhoidal Salmonella (iNTS) serovars Typhimurium and Enteritidis have been identified in patients with bloodstream infection in Sub-Saharan Africa. Here, we isolated and characterised 32 phages capable of infecting S. Typhimurium and S. Enteritidis, from water sources in Malawi and the UK. The phages were classified in three major phylogenetic clusters that were geographically distributed. In terms of host range, Cluster 1 phages were able to infect all bacterial hosts tested, whereas Clusters 2 and 3 had a more restricted profile. Cluster 3 contained two sub-clusters, and 3.b contained the most novel isolates. This study represents the first exploration of the potential for phages to target the lineages of Salmonella that are responsible for bloodstream infections in Sub-Saharan Africa.


Assuntos
Bacteriófagos , Infecções por Salmonella/terapia , Salmonella enteritidis/virologia , Salmonella typhimurium/virologia , Sepse/microbiologia , Humanos , Malaui/epidemiologia , Infecções por Salmonella/virologia , Salmonella enteritidis/isolamento & purificação , Salmonella typhimurium/isolamento & purificação , Reino Unido/epidemiologia , Microbiologia da Água
19.
Nat Microbiol ; 5(7): 909-916, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32313202

RESUMO

The peritrophic matrix of blood-feeding insects is a chitinous structure that forms a protective barrier against oral pathogens and abrasive particles1. Tsetse flies transmit Trypanosoma brucei, which is the parasite that causes human sleeping sickness and is also partially responsible for animal trypanosomiasis in Sub-Saharan Africa. For this parasite to establish an infection in flies, it must first colonize the area between the peritrophic matrix and gut epithelium called the ectoperitrophic space. Although unproven, it is generally accepted that trypanosomes reach the ectoperitrophic space by penetrating the peritrophic matrix in the anterior midgut2-4. Here, we revisited this event using fluorescence- and electron-microscopy methodologies. We show that trypanosomes penetrate the ectoperitrophic space in which the newly made peritrophic matrix is synthesized by the proventriculus. Our model describes how these proventriculus-colonizing parasites can either migrate to the ectoperitrophic space or become trapped within peritrophic matrix layers to form cyst-like bodies that are passively pushed along the gut as the matrix gets remodelled. Furthermore, early proventricular colonization seems to be promoted by factors in trypanosome-infected blood that cause higher salivary gland infections and potentially increase parasite transmission.


Assuntos
Proventrículo/parasitologia , Trypanosoma brucei brucei/fisiologia , Moscas Tsé-Tsé/microbiologia , Animais , Proventrículo/ultraestrutura , Trypanosoma brucei brucei/isolamento & purificação , Moscas Tsé-Tsé/ultraestrutura
20.
Autophagy ; 16(7): 1314-1331, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-31651224

RESUMO

Activation of trypsinogen (formation of trypsin) inside the pancreas is an early pathological event in the development of acute pancreatitis. In our previous studies we identified the activation of trypsinogen within endocytic vacuoles (EVs), cellular organelles that appear in pancreatic acinar cells treated with the inducers of acute pancreatitis. EVs are formed as a result of aberrant compound exocytosis and subsequent internalization of post-exocytic structures. These organelles can be up to 12 µm in diameter and can be actinated (i.e. coated with F-actin). Notably, EVs can undergo intracellular rupture and fusion with the plasma membrane, providing trypsin with access to cytoplasmic and extracellular targets. Unraveling the mechanisms involved in cellular processing of EVs is an interesting cell biological challenge with potential benefits for understanding acute pancreatitis. In this study we have investigated autophagy of EVs and discovered that it involves a non-canonical LC3-conjugation mechanism, reminiscent in its properties to LC3-associated phagocytosis (LAP); in both processes LC3 was recruited to single, outer organellar membranes. Trypsinogen activation peptide was observed in approximately 55% of LC3-coated EVs indicating the relevance of the described process to the early cellular events of acute pancreatitis. We also investigated relationships between actination and non-canonical autophagy of EVs and concluded that these processes represent sequential steps in the evolution of EVs. Our study expands the known roles of LAP and indicates that, in addition to its well-established functions in phagocytosis and macropinocytosis, LAP is also involved in the processing of post-exocytic organelles in exocrine secretory cells. ABBREVIATIONS: AP: acute pancreatitis; CCK: cholecystokinin; CLEM: correlative light and electron microscopy; DPI: diphenyleneiodonium; EV: endocytic vacuole; LAP: LC3-associate phagocytosis; MAP1LC3/LC3: microtubule-associated protein 1 light chain 3; PACs: pancreatic acinar cells; PFA: paraformaldehyde; PtdIns3K: phosphatidylinositol 3-kinase; PtdIns3P: phosphatidylinositol 3-phosphate; Res: resveratrol; TAP: trypsinogen activation peptide; TEM: transmission electron microscopy; TLC-S: taurolithocholic acid 3-sulfate; TRD: Dextran Texas Red 3000 MW Neutral; ZGs: zymogen granules.


Assuntos
Células Acinares/metabolismo , Autofagia , Endocitose , Proteínas Associadas aos Microtúbulos/metabolismo , Pâncreas/citologia , Fagocitose , Vacúolos/metabolismo , Sal Dissódico do Ácido 1,2-Di-Hidroxibenzeno-3,5 Dissulfônico/farmacologia , Células Acinares/efeitos dos fármacos , Células Acinares/ultraestrutura , Actinas/metabolismo , Animais , Autofagia/efeitos dos fármacos , Proteína Homóloga à Proteína-1 Relacionada à Autofagia/antagonistas & inibidores , Proteína Homóloga à Proteína-1 Relacionada à Autofagia/metabolismo , Proteínas Relacionadas à Autofagia/química , Proteínas Relacionadas à Autofagia/metabolismo , Cloroquina/farmacologia , Colecistocinina/farmacologia , Camundongos Endogâmicos C57BL , Oniocompostos/farmacologia , Fagocitose/efeitos dos fármacos , Fosfatidilinositol 3-Quinases/metabolismo , Domínios Proteicos , Inibidores de Proteínas Quinases/farmacologia , Espécies Reativas de Oxigênio/metabolismo , Resveratrol/farmacologia , Ácido Taurolitocólico/análogos & derivados , Tripsinogênio/metabolismo , ATPases Vacuolares Próton-Translocadoras/antagonistas & inibidores , ATPases Vacuolares Próton-Translocadoras/metabolismo , Vacúolos/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA