Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Physiol Genomics ; 56(9): 597-608, 2024 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-38975796

RESUMO

Dairy cattle with high (HM) versus low muscle (LM) reserves as determined by longissimus dorsi muscle depth (LDD) in late gestation exhibit differential muscle mobilization related to subsequent milk production. Moreover, branched-chain volatile fatty acid (BCVFA) supplementation increased blood glucose levels. We hypothesized that differences in HM and LM reflect distinct muscle metabolism and that BCVFA supplementation altered metabolic pathways. At 42 days before expected calving (BEC), Holstein dairy cows were enrolled in a 2 × 2 factorial study of diet and muscle reserves, by assignment to control (CON)- or BCVFA-supplemented diets and LDD of HM (>4.6 cm) or LM (≤4.6 cm) groups: HM-CON (n = 13), HM-BCVFA (n = 10), LM-CON (n = 9), and LM-BCVFA (n = 9). Longisumus dorsi muscle was biopsied at 21 days BEC, total RNA was isolated, and protein-coding gene expression was measured with RNA sequencing. Between HM and LM, 713 genes were differentially expressed and 481 between BCVFA and CON (P < 0.05). Transcriptional signatures indicated differential distribution of type II fibers between groups, with MYH1 greater in LM cattle and MYH2 greater in HM cattle (P < 0.05). Signatures of LM cattle relative to HM cattle indicated greater activation of autophagy, ubiquitin-proteasome, and Ca2+-calpain pathways. HM cattle displayed greater expression of genes that encode extracellular matrix proteins and factors that regulate their proteolysis and turnover. BCVFA modified transcriptomes by increasing expression of genes that regulate fatty acid degradation and flux of carbons into the tricarboxylic acid cycle as acetyl CoA. Molecular signatures support distinct metabolic strategies between LM and HM cattle and that BCVFA supplementation increased substrates for energy generation.NEW & NOTEWORTHY Muscle biopsies of the longissimus dorsi of prepartum dairy cattle indicate that molecular signatures support distinct metabolic strategies between low- and high-muscle cattle and that branched-chain volatile fatty acid supplementation increased substrates for energy generation.


Assuntos
Suplementos Nutricionais , Músculo Esquelético , Animais , Bovinos , Feminino , Músculo Esquelético/metabolismo , Músculo Esquelético/efeitos dos fármacos , Gravidez , Ácidos Graxos/metabolismo , Dieta/veterinária , Ração Animal , Transcriptoma/genética
2.
J Dairy Sci ; 107(10): 7932-7950, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-38876219

RESUMO

Nutrition and physiological state affect hepatic metabolism. Our objective was to determine whether feeding flaxseed oil (∼50% C18:3n-3 cis), high oleic soybean oil (∼70% C18:1 cis-9), or milk fat (∼50% C16:0) alters hepatic expression of PC, PCK1, and PCK2 and the flow of carbons from propionate and pyruvate into the tricarboxylic acid (TCA) cycle in preruminating calves. Male Holstein calves (n = 40) were assigned to a diet of skim milk with either: 3% milk fat (MF; n = 8), 3% flaxseed oil (Flax; n = 8), 3% high oleic soybean oil (HOSO; n = 8), 1.5% MF + 1.5% high oleic soybean oil (MF-HOSO; n = 8), or 1.5% MF + 1.5% flaxseed oil (MF-Flax; n = 8) from d 14 to d 21 postnatal. At d 21 postnatal, a liver biopsy was taken for gene expression and metabolic flux analysis. Liver explants were incubated in [U-13C] propionate and [U-13C] pyruvate to trace carbon flux through TCA cycle intermediates or with [U-14C] lactate, [1-14C] palmitic acid, or [2-14C] propionate to quantify substrate oxidation to CO2 and acid-soluble products. Compared with other treatments, plasma C18:3n-3 cis was 10 times higher and C18:1 cis-9 was 3 times lower in both Flax (Flax and MF-Flax) treatments. PC, PCK1, and PCK2 expression and flux of [U-13C] pyruvate as well as [U-13C] propionate were not different among treatments. PC expression was negatively correlated with the enrichment of citrate M+5 and malate M+3, and PCK2 was negatively correlated with citrate M+5, suggesting that when expression of these enzymes is increased, carbon from pyruvate enters the TCA cycle via PC-mediated carboxylation, and then oxaloacetate is converted to phosphoenolpyruvate via PCK2. Acid-soluble product formation and PC expression were reduced in HOSO (MF-HOSO and HOSO) treatments compared with Flax (MF-Flax and Flax), indicating that fatty acids regulate PC expression and carbon flux, but that fatty acid flux control points are not connected to PC, PCK1, or PCK2. In conclusion, fatty acids regulate hepatic expression of PC, PCK1, and PCK2, and carbon flux, but the point of control is distinct.


Assuntos
Dieta , Ácidos Graxos , Óleo de Semente do Linho , Fígado , Leite , Óleo de Soja , Animais , Óleo de Soja/metabolismo , Bovinos , Óleo de Semente do Linho/metabolismo , Leite/química , Leite/metabolismo , Ácidos Graxos/metabolismo , Dieta/veterinária , Fígado/metabolismo , Masculino , Ração Animal
3.
Nat Genet ; 56(8): 1566-1573, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-39103649

RESUMO

Telomere-to-telomere (T2T) assemblies reveal new insights into the structure and function of the previously 'invisible' parts of the genome and allow comparative analyses of complete genomes across entire clades. We present here an open collaborative effort, termed the 'Ruminant T2T Consortium' (RT2T), that aims to generate complete diploid assemblies for numerous species of the Artiodactyla suborder Ruminantia to examine chromosomal evolution in the context of natural selection and domestication of species used as livestock.


Assuntos
Ruminantes , Telômero , Telômero/genética , Animais , Ruminantes/genética , Evolução Molecular , Genoma/genética , Seleção Genética , Filogenia , Diploide
4.
JDS Commun ; 4(5): 412-416, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37727248

RESUMO

Cattle exposed to shifts in light-dark phases during late pregnancy develop hypoglycemia and insulin resistance. Our objective was to investigate if differences in liver carbon flux for gluconeogenesis were driving circadian-disrupted metabolic alterations in glucose homeostasis, and relate changes in carbon flux to hepatic gene expression. We hypothesized circadian disruption would decrease hepatic carbon flux for glucose synthesis. Milking was ceased in late-gestation Holstein cows (n = 8) at 60 d before expected calving (BEC), and animals were assigned to either a control (n = 4) or a phase-shifted (PS; n = 4) group. From d 35 to 21 BEC both groups of cows were exposed to 16 h of light and 8 h of dark, but for the PS, light was shifted forward 6 h every 3 d. On d 21 BEC, liver biopsies were collected, subdivided, and incubated in 1.0 mM [U-13C] propionate for 2 h. Total RNA was isolated from a separate liver sample and used for RNA-sequencing analysis. Postincubation 13C mass isotopologue distribution was determined for aspartate, serine, alanine, and glutamate and used to calculate metabolic flux ratios. Enrichment of serine to enrichment of aspartate ratio (eSer:eAsp) was lower for PS (0.75 ± 0.02) cows compared with control (0.81 ± 0.04), indicating a reduction in carbon flux toward glucose for PS animals. eSer:eAsp ratio was negatively correlated to propionyl-CoA carboxylase (PCCB; r = -0.79) and succinate dehydrogenase subunit D (SDHD; r = -0.82). These relationships indicate that when dairy cattle are exposed to circadian disruption during late gestation, propionate carbon is preferentially used for energy rather than gluconeogenesis.

5.
Animals (Basel) ; 13(22)2023 Nov 19.
Artigo em Inglês | MEDLINE | ID: mdl-38003190

RESUMO

Palmitic (C16:0), α-linolenic acid (C18:3n-3 cis), and propionate regulate bovine pyruvate carboxylase (PC) and phosphoenolpyruvate carboxykinase (PCK1) expression in vitro. The objective of this experiment was to determine the impact of C16:0, C18:3n-3 cis, propionate, and acetate postruminal infusions on hepatic PC and PCK1 expression. We hypothesized that circulating fatty acids alter hepatic PC and PCK1 in lactating dairy cows. Acetate, propionate, palm oil, and flaxseed oil were supplied postruminally to lactating cows (n = 4) using two 4 × 4 Latin square studies. For Experiment 1, cows were infused on an hourly basis with either a bolus of propionate, acetate, or the combination of propionate and palm oil, or acetate and palm oil, and Experiment 2 was similar, but flaxseed oil replaced palm oil. Flaxseed infusions increased plasma concentration and the molar percent of C18:3n-3 cis and decreased C16:0 but did not affect PC or PCK1 expression. Palm infusions did not affect blood metabolites or the hepatic expression of PC or PCK1. The lack of responses to short-chain fatty acid infusions and changes in circulating long-chain fatty acids in mature cattle are not suitable models to study the effects of α-linolenic acid and propionate on bovine PC and PCK1 expression previously observed in vitro.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA