Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Assunto principal
Tipo de documento
Intervalo de ano de publicação
1.
Hypertension ; 80(5): 1011-1023, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36876500

RESUMO

BACKGROUND: Preeclampsia is one of the leading causes of maternal mortality worldwide and is strongly associated with long-term morbidity in mothers and newborns. Referred to as one of the deep placentation disorders, insufficient remodeling of the spiral arteries during the first trimester remains a major cause of placental dysfunction. Persisting pulsatile uterine blood flow causes abnormal ischemia/reoxygenation phenomenon in the placenta and stabilizes the HIF-2α (hypoxia-inducible factor-2α) in the cytotrophoblasts. HIF-2α signaling impairs trophoblast differentiation and increases sFLT-1 (soluble fms-like tyrosine kinase-1) secretion, which reduces fetal growth and causes maternal symptoms. This study aims to evaluate the benefits of using PT2385-an oral specific HIF-2α inhibitor-to treat severe placental dysfunction. METHODS: To evaluate its therapeutic potential, PT2385 was first studied in primary human cytotrophoblasts isolated from term placenta and exposed to 2.5% O2 to stabilize HIF-2α. Viability and luciferase assays, RNA sequencing, and immunostaining were used to analyze differentiation and angiogenic factor balance. The ability of PT2385 to mitigate maternal manifestations of preeclampsia was studied in the selective reduced uterine perfusion pressure model performed in Sprague-Dawley rats. RESULTS: In vitro, RNA sequencing analysis and conventional techniques showed that treated cytotrophoblast displayed an enhanced differentiation into syncytiotrophoblasts and normalized angiogenic factor secretion compared with vehicle-treated cells. In the selective reduced uterine perfusion pressure model, PT2385 efficiently decreased sFLT-1 production, thus preventing the onset of hypertension and proteinuria in pregnant dams. CONCLUSIONS: These results highlight HIF-2α as a new player in our understanding of placental dysfunction and support the use of PT2385 to treat severe preeclampsia in humans.


Assuntos
Pré-Eclâmpsia , Recém-Nascido , Humanos , Ratos , Gravidez , Feminino , Animais , Placenta/irrigação sanguínea , Indutores da Angiogênese , Ratos Sprague-Dawley , Placentação , Fatores de Transcrição Hélice-Alça-Hélice Básicos , Hipóxia/complicações , Receptor 1 de Fatores de Crescimento do Endotélio Vascular/genética
2.
Cancers (Basel) ; 14(19)2022 Oct 07.
Artigo em Inglês | MEDLINE | ID: mdl-36230841

RESUMO

At diagnosis, about 35% of pancreatic cancers are at the locally invasive yet premetastatic stage. Surgical resection is not a treatment option, leaving patients with a largely incurable disease that often evolves to the polymetastatic stage despite chemotherapeutic interventions. In this preclinical study, we hypothesized that pancreatic cancer metastasis can be prevented by inhibiting mitochondrial redox signaling with MitoQ, a mitochondria-targeted antioxidant. Using four different cancer cell lines, we report that, at clinically relevant concentrations (100-500 nM), MitoQ selectively repressed mesenchymal pancreatic cancer cell respiration, which involved the inhibition of the expression of PGC-1α, NRF1 and a reduced expression of electron-transfer-chain complexes I to III. MitoQ consequently decreased the mitochondrial membrane potential and mitochondrial superoxide production by these cells. Phenotypically, MitoQ further inhibited pancreatic cancer cell migration, invasion, clonogenicity and the expression of stem cell markers. It reduced by ~50% the metastatic homing of human MIA PaCa-2 cells in the lungs of mice. We further show that combination treatments with chemotherapy are conceivable. Collectively, this study indicates that the inhibition of mitochondrial redox signaling is a possible therapeutic option to inhibit the metastatic progression of pancreatic cancer.

3.
Cancers (Basel) ; 13(3)2021 Feb 02.
Artigo em Inglês | MEDLINE | ID: mdl-33540599

RESUMO

To survive and proliferate in solid tumors, cancer cells adapt and evolve rapidly in microenvironments where oxygen and substrate bioavailability fluctuates over time and space. This creates metabolic heterogeneity. Cancer cells can further cooperate metabolically, for example by swapping glycolytic end-product lactate for blood-borne glucose. This type of cooperation can be targeted therapeutically, since transmembrane lactate exchanges are facilitated by lactate-proton symporters of the monocarboxylate (MCT) family. Among new drugs, AZD3965 is a first-in-class selective MCT1 inhibitor currently tested in Phase I/II clinical trials for patients with different types of cancers. Because MCT1 can function bidirectionally, we tested here whether and how malignant and nonmalignant cells adapt their metabolism and MCT repertoire when AZD3965 inhibits either lactate import or export. Using breast-associated malignant and nonmalignant cell lines as models, we report that AZD3965 is not directly cytotoxic. In the presence of glucose and glutamine, oxidative cells can survive when lactate uptake is blocked, and proliferating cells compensate MCT1 inhibition by overexpressing MCT4, a specialized facilitator of lactate export. Phenotypic characterization of mice focusing on metabolism, muscle and brain physiology found partial and transient memory retention defect as sole consequence of MCT1 inhibition by AZD3965. We therefore conclude that AZD3965 is compatible with anticancer therapy.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA