Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 37
Filtrar
1.
J Mater Sci Mater Med ; 31(11): 91, 2020 Oct 21.
Artigo em Inglês | MEDLINE | ID: mdl-33089362

RESUMO

The present study evaluated the quality of single-cone root canal fillings with bioceramic (BC) sealer using three different techniques by means of micro-computed tomography (micro-CT). The canals of 30 extracted single-rooted permanent teeth were shaped with R40 Reciproc blue files and filled with the single-cone technique (SCT). BioRoot RCS BC sealer was placed inside the canals with one of the following master cones: R40 cone to working length (RWL, n = 10); R40 cone trimmed 1 mm short of working length (RWL-1, n = 10); non-standardized gutta-percha cone to working length (NSWL, n = 10). A quantitative and qualitative micro-CT analysis assessed the filling quality and internal/external voids formation. Collected data underwent statistical analysis by multivariate one-way analysis of variance (α = 0.05). In all groups, the voids were minimal and prevalently external. The NSWL and RWL-1 groups had increased sealer ratios in the whole canal and the apical canal portion, respectively. The lowest amounts of voids were found in the RWL group; the void volumes were slightly greater in the RWL-1 mm and NSWL groups, especially at the apical level. Two alternative SCTs showed satisfactory filling ability, uniform distribution of the BC sealer, and a minimally increased voids formation compared to the standard SCT with dedicated cone. The two tested alternative SCTs could take advantage of the beneficial characteristics of the BC sealer, which evenly filled the endodontic space, ideally sealing both the major and the accessory communications with the periodontium.


Assuntos
Cerâmica/química , Guta-Percha/química , Materiais Restauradores do Canal Radicular , Obturação do Canal Radicular/métodos , Microtomografia por Raio-X/métodos , Cavidade Pulpar , Endodontia/instrumentação , Endodontia/métodos , Humanos , Teste de Materiais , Dente Molar , Periodonto/metabolismo
2.
Implant Dent ; 25(5): 613-8, 2016 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-27548107

RESUMO

PURPOSE: The aim of this in vitro study was to evaluate the mechanical reliability of a dental implant system by testing its maximum fracture load and mechanical performance under cyclic fatigue stress. METHODS: An experimental study according to the international standards (UNI EN ISO 14801: 2008) was performed using 13 implants (3.80 mm in diameter and 12 mm in length) with straight titanium abutments tightened to 30 N. Five samples were subjected to compression stress at break. Based on the mean fracture load value obtained in this test, the levels of dynamic loading range were set and were carried on at a frequency of 15 Hz for 5 × 10 cycles. RESULTS: The compression stress at break mean value of the tested implants was 430 N (SD ± 35.66 N). In the mechanical fatigue stress test, the fatigue limit for 5 × 10 load cycles was 172 N. CONCLUSIONS: The evaluated implant system proved to withstand considerable mechanical loads under the "worst-case" loading situation performed according to UNI EN ISO 14801 standard. The reliability of this test protocol makes it suitable to be accomplished for understanding and comparing mechanical properties of implant systems.


Assuntos
Projeto do Implante Dentário-Pivô , Projeto do Implante Dentário-Pivô/efeitos adversos , Projeto do Implante Dentário-Pivô/métodos , Projeto do Implante Dentário-Pivô/normas , Falha de Restauração Dentária , Análise do Estresse Dentário/métodos , Análise do Estresse Dentário/normas , Humanos , Reprodutibilidade dos Testes , Estresse Mecânico
3.
Implant Dent ; 23(6): 665-71, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-25290279

RESUMO

PURPOSE: The aim of this in vitro study was to evaluate the maximum fracture load and the mechanical performance to cyclic fatigue stress of a dental implant system. METHODS: An experimental study according to the international standards (UNI EN ISO 14801: 2008) was carried out using 15 implants (3.80 mm of diameter and 13 mm of length) with applied straight titanium abutment tightened to 30 N. Five samples were subjected to compression stress at break. Based on the mean fracture load value obtained in this test, the levels of dynamic loading range were set that were carried on at a frequency of 15 Hz for 5 × 10 cycles. RESULTS: The compression stress at break mean value of the tested implants was 499.40 N (SD ±50.1 N). In the mechanical fatigue stress test, the fatigue limit for 5 × 10 load cycles for all tested samples was 250 N. CONCLUSIONS: The evaluated implant system proved to withstand considerable mechanical loads under the "worst-case" loading situation performed according to UNI EN ISO 14801 standard. The reliability of this test protocol makes it suitable to be accomplished for understanding and comparing mechanical properties of other implant systems.


Assuntos
Implantes Dentários/normas , Análise do Estresse Dentário/normas , Projeto do Implante Dentário-Pivô , Falha de Restauração Dentária , Análise de Falha de Equipamento , Humanos , Técnicas In Vitro , Reprodutibilidade dos Testes , Estresse Mecânico , Titânio , Torque
4.
Langmuir ; 29(1): 82-91, 2013 Jan 08.
Artigo em Inglês | MEDLINE | ID: mdl-23214919

RESUMO

In this article, we have exploited a microfluidic foaming technique for the generation of highly monodisperse gas-in-liquid bubbles as a templating system for scaffolds characterized by an ordered and homogeneous porous texture. An aqueous poly(vinyl alcohol) (PVA) solution (containing a surfactant) and a gas (argon) are injected simultaneously at constant flow rates in a flow-focusing device (FFD), in which the gas thread breaks up to form monodisperse bubbles. Immediately after its formation, the foam is collected and frozen in liquid nitrogen, freeze-dried, and cross-linked with glutaraldehyde. In order to highlight the superior morphological quality of the obtained porous material, a comparison between this scaffold and another one, also constituted of PVA but obtained with a traditional gas foaming technique, was carried out. Such a comparison has been conducted by analyzing electron microscopy and X-ray microtomographic images of the two samples. It turned out that the microfluidic produced scaffold was characterized by much more uniform porous texture than the gas-foaming one as witnessed by narrower pore size, interconnection, and wall thickness distributions. On the other side, scarce pore interconnectivity, relatively low pore volume, and limited production rate represent, by now, the principal disadvantages of microfluidic foaming as scaffold fabrication method, emphasizing the kind of improvement that this technique needs to undergo.


Assuntos
Microfluídica , Álcool de Polivinil/química , Alicerces Teciduais/química , Gases , Tensoativos/química
5.
J Mech Behav Biomed Mater ; 103: 103583, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-32090912

RESUMO

Additive manufacturing for tissue engineering applications offers the possibility to design scaffolds characterized by a fine and detailed microarchitecture. Several fabrication technologies are currently available which allow to prepare tailored structures with a large selection of materials for restoring and healing tissues. However, 3D printed scaffolds are generally collected by assembling repetitive geometrical units or reproducing specific patterns in the layering direction, leading to a highly ordered architecture that does not mimic the morphology of the natural extracellular matrix (ECM), one of the main goals to be reached for an effective therapeutic approach. It is usually stated in the tissue engineering field that a scaffold has to be considered a temporary ECM, resembling all the peculiar features as close as possible and, in this regard, an ordered microstructure cannot be usually observed within biological tissues and organs. With the aim to overcame this limitation and offer a potential approach for bone tissue applications, the present study proposes a design methodology to fabricate 3D printed scaffolds characterized by a random microarchitecture which can be repeatedly reproduced thanks to the intrinsic controllable process of additive manufacturing. In this framework, four different models in polylactic acid were fabricated by means of fused deposition modelling, including a three-dimensional random distribution of spherical pores of 400, 500, and 600 µm for the first three cases, and a randomly varied distribution in the range 400-600 µm for the fourth case. A detailed assessment by means of microcomputed tomography and mechanical evaluation was then carried out in order to fully analyse the resulting scaffolds, providing both morphological and quantitative data.


Assuntos
Engenharia Tecidual , Alicerces Teciduais , Osso e Ossos , Impressão Tridimensional , Microtomografia por Raio-X
6.
Biomacromolecules ; 10(12): 3188-92, 2009 Dec 14.
Artigo em Inglês | MEDLINE | ID: mdl-19891500

RESUMO

In the present work, a novel synthetic methodology for the preparation of scaffold of biopolymeric nature is described. In particular, a porous gelatin scaffold was prepared by foam templating. The gas phase, nitrogen, was generated by means of the reaction between sulfamic acid and sodium nitrite in situ a concentrated solution of gelatin and in the presence of a suitable polymeric surfactant in association with sodium dodecyl sulfate. The foam was prepared at a temperature of 45 degrees C and then let gel at 5 degrees C. After purification, the physical gel was auto-cross-linked with EDC and freeze-dried. The scaffold synthesized with this technique presents a morphology characterized by voids of spherical symmetry highly interconnected by a plurality of interconnects, and, as a consequence, is particularly suited for cell culturing. In more quantitative terms, voids and interconnects are characterized by an average diameter of 230 and 90 microm, respectively. Preliminary tests of cell culturing demonstrated the suitability of such a scaffold for tissue engineering applications.


Assuntos
Gases/química , Plásticos/síntese química , Engenharia Tecidual , Alicerces Teciduais/química , Linhagem Celular , Sobrevivência Celular , Gelatina/química , Humanos , Microscopia Eletrônica de Varredura , Plásticos/química , Porosidade
7.
Mar Environ Res ; 136: 89-98, 2018 May.
Artigo em Inglês | MEDLINE | ID: mdl-29500050

RESUMO

The new record of a shallow-water submarine hydrothermal field (<150 m w.d.) in the western Mediterranean Sea (Tyrrhenian Sea, Italy) allows us to study CO2 fluid impact on benthic foraminifers. Benthic foraminifers calcification process is sensitive to ocean acidification and to local chemical and physical parameters of seawater and pore water. Thus, foraminifers can record specific environmental conditions related to hydrothermal fluids, but at present their response to such activity is poorly defined. The major outcome of this study is the finding of a very uncommon taxon for the Mediterranean Sea, i.e., the Spiculosiphon oceana, a giant foraminifer agglutinating spicules of sponges. This evidence, along with the strong decrease of calcareous tests in the foraminiferal assemblages associated to hydrothermal activity, provides new insights on the meiofauna living in natural stressed environment. In particular, observations obtained from this study allow us to consider S. oceana a potential tolerant species of high CO2 concentrations (about 2-4 times higher than the normal marine values) and a proxy of acidic environments as well as of recent ocean acidification processes.


Assuntos
Monitoramento Ambiental/métodos , Foraminíferos/química , Sedimentos Geológicos/química , Água do Mar/química , Itália , Mar Mediterrâneo
8.
Metabolism ; 83: 149-158, 2018 06.
Artigo em Inglês | MEDLINE | ID: mdl-29432728

RESUMO

OBJECTIVE: Galectin-3 is constitutively expressed in bone cells and was recently shown to modulate osteogenic transdifferentiation of vascular smooth muscle cells and atherosclerotic calcification. However, the role of galectin-3 in bone physiology is largely undefined. To address this issue, we analyzed (1) the skeletal features of 1-, 3- and 6-month-old galectin-3 null (Lgals3-/-) and wild type (WT) mice and (2) the differentiation and function of osteoblasts and osteoclasts derived from these animals. METHODS: Long bone phenotype, gene expression profile, and remodeling were investigated by micro-computed tomography, real time-PCR, static and dynamic histomorphometry, and assessment of biochemical markers of bone resorption and formation. Bone competence was also evaluated by biomechanical testing at 3 months. In vitro, the effects of galectin-3 deficiency on bone cell differentiation and function were investigated by assessing (a) gene expression of osteoblast markers, alkaline phosphatase activity, mineralization assay, and WNT/ß-catenin signaling (of which galectin-3 is a known regulator) in osteoblasts; and (b) tartrate-resistant acid phosphatase activity and bone resorption activity in osteoclasts. RESULTS: Lgals3-/- mice revealed a wide range of age-dependent alterations including lower bone formation and higher bone resorption, accelerated age-dependent trabecular bone loss (p < 0.01 vs. WT at 3 months) and reduced bone strength (p < 0.01 vs. WT at 3 months). These abnormalities were accompanied by a steady inflammatory state, as revealed by higher bone expression of the pro-inflammatory cytokines interleukin (IL)-1ß and IL-6 (p < 0.001 vs. WT at 3 months), increased content of osteal macrophages (p < 0.01 vs. WT at 3 months), and reduced expression of markers of alternative (M2) macrophage activation. Lgals3-/- osteoblasts and osteoclasts showed impaired terminal differentiation, reduced mineralization capacity (p < 0.01 vs. WT cells) and resorption activity (p < 0.01 vs. WT cells). Mechanistically, impaired differentiation and function of Lgals3-/- osteoblasts was associated with altered WNT/ß-catenin signaling (p < 0.01 vs. WT cells). CONCLUSIONS: These data provide evidence for a contribution of galectin-3 to bone cell maturation and function, bone remodeling, and biomechanical competence, thus identifying galectin-3 as a promising therapeutic target for age-related disorders of bone remodeling.


Assuntos
Remodelação Óssea/genética , Diferenciação Celular/genética , Resistência à Flexão/fisiologia , Galectina 3/fisiologia , Osteoblastos/fisiologia , Osteogênese/genética , Animais , Fenômenos Bioquímicos/genética , Densidade Óssea/genética , Células Cultivadas , Feminino , Galectina 3/genética , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout
9.
Stem Cell Res Ther ; 9(1): 104, 2018 04 13.
Artigo em Inglês | MEDLINE | ID: mdl-29653587

RESUMO

BACKGROUND: The role of bone tissue engineering in the field of regenerative medicine has been a main research topic over the past few years. There has been much interest in the use of three-dimensional (3D) engineered scaffolds (PLA) complexed with human gingival mesenchymal stem cells (hGMSCs) as a new therapeutic strategy to improve bone tissue regeneration. These devices can mimic a more favorable endogenous microenvironment for cells in vivo by providing 3D substrates which are able to support cell survival, proliferation and differentiation. The present study evaluated the in vitro and in vivo capability of bone defect regeneration of 3D PLA, hGMSCs, extracellular vesicles (EVs), or polyethyleneimine (PEI)-engineered EVs (PEI-EVs) in the following experimental groups: 3D-PLA, 3D-PLA + hGMSCs, 3D-PLA + EVs, 3D-PLA + EVs + hGMSCs, 3D-PLA + PEI-EVs, 3D-PLA + PEI-EVs + hGMSCs. METHODS: The structural parameters of the scaffold were evaluated using both scanning electron microscopy and nondestructive microcomputed tomography. Nanotopographic surface features were investigated by means of atomic force microscopy. Scaffolds showed a statistically significant mass loss along the 112-day evaluation. RESULTS: Our in vitro results revealed that both 3D-PLA + EVs + hGMSCs and 3D-PLA + PEI-EVs + hGMSCs showed no cytotoxicity. However, 3D-PLA + PEI-EVs + hGMSCs exhibited greater osteogenic inductivity as revealed by morphological evaluation and transcriptomic analysis performed by next-generation sequencing (NGS). In addition, in vivo results showed that 3D-PLA + PEI-EVs + hGMSCs and 3D-PLA + PEI-EVs scaffolds implanted in rats subjected to cortical calvaria bone tissue damage were able to improve bone healing by showing better osteogenic properties. These results were supported also by computed tomography evaluation that revealed the repair of bone calvaria damage. CONCLUSION: The re-establishing of the integrity of the bone lesions could be a promising strategy in the treatment of accidental or surgery trauma, especially for cranial bones.


Assuntos
Vesículas Extracelulares/metabolismo , Gengiva/metabolismo , Células-Tronco Mesenquimais/metabolismo , Microscopia de Força Atômica/métodos , Alicerces Teciduais/química , Animais , Regeneração Óssea , Humanos , Masculino , Ratos , Ratos Wistar
10.
J Endod ; 33(7): 859-63, 2007 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-17804330

RESUMO

The aims of this study were to compare Resilon (Resilon Research LLC, Madison, CT) in conjunction with either a bonding (Epiphany; Pentron Clinical Technologies, Wallingford, CT) or a nonbonding endodontic sealer (Pulp Canal Sealer; Kerr Corporation, Orange, CA) to EndoRez (Ultradent Products Inc, South Jordan, UT) and gutta-percha with regards to the physical properties and flexural stress in standardized dentin cylinders and the flexural stress of Resilon and gutta-percha. The external surface of 50 maxillary central incisors was reduced by means of mechanical milling to obtain dentin cylinders with an external diameter of 3 mm and minimum length of 12 mm. Root canals were prepared to obtain a standardized cylindrical preparation of 1.3 mm in diameter at the center of the root. The cylinders were randomly divided into five groups (n = 10): group 1: obturation with gutta-percha and Pulp Canal Sealer; group 2: obturation with Resilon, Epiphany primer, and Epiphany; group 3: obturation with Resilon and Pulp Canal Sealer; group 4: obturation with EndoRez methacrylate-based endodontic sealer; and group 5: dentin cylinders were not obturated. Ten gutta-percha (group 6) and Resilon (group 7) pellets for the Obtura gun were also tested. A three-point bending test was used to measure the maximum load values of specimens from groups 1 to 5 and the flexural strength and flexural modulus values for specimens from groups 6 and 7. Statistical analysis was performed to determine significance differences (p < 0.05). An analysis of variance test showed no significant difference among groups 1 to 5 (p = 0.697; F = 0.60). An independent sample t test showed statistically significant differences between groups 6 and 7 in flexural strength (p = 0.000) and flexural modulus (p = 0.000). Within the limits of this study, it may be concluded that the currently available endodontic-filling materials and their recommended adhesive procedures are not able to influence the mechanical properties of root canal dentin and that the flexural properties of Resilon and gutta-percha are too low to reinforce roots.


Assuntos
Cavidade Pulpar/efeitos dos fármacos , Análise do Estresse Dentário/métodos , Dentina/efeitos dos fármacos , Materiais Restauradores do Canal Radicular/farmacologia , Análise de Variância , Cavidade Pulpar/química , Dentina/química , Humanos , Maleabilidade/efeitos dos fármacos , Materiais Restauradores do Canal Radicular/química
11.
Dent Mater ; 23(9): 1129-35, 2007 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-17116326

RESUMO

OBJECTIVES: To evaluate the flexural modulus and flexural strength of different types of endodontic post in comparison with human root dentin. METHODS: Three different types of fiber-reinforced composite (FRC) posts and three metal posts each comprising 10 specimens (n=10) and 20 dentin bars were loaded to failure in a three-point bending test to determine the flexural modulus (GPa) and the flexural strength (MPa). Three randomly selected fiber posts of each group were evaluated using a scanning electron microscope (SEM) to illustrate the differences in mode of fracture. Data were subjected to a one-way ANOVA to determine significant differences between groups and the Bonferroni t-test multiple comparison was applied to investigate which mean values differed from one another with significance levels of P<0.05. RESULTS: The flexural modulus recorded for the dentin bars was 17.5+/-3.8 GPa. The values for posts ranged from 24.4+/-3.8 GPa for silica fiber posts to 108.6+/-10.7 GPa for stainless steel posts. The flexural strength for dentin was 212.9+/-41.9 MPa, while the posts ranged from 879.1+/-66.2 MPa for silica fiber posts to 1545.3+/-135.9 MPa for cast gold posts. The ANOVA test analysis revealed significant differences between groups (P<0.05) for flexural modulus and flexural strength mean values. SIGNIFICANCE: FRC posts have an elastic modulus that more closely approaches that of dentin while that for metal posts was much higher. The flexural strength of fiber and metal posts was respectively four and seven times higher than root dentin.


Assuntos
Dentina/fisiologia , Técnica para Retentor Intrarradicular/instrumentação , Raiz Dentária/fisiologia , Carbono/química , Fibra de Carbono , Resinas Compostas/química , Ligas Dentárias/química , Materiais Dentários/química , Planejamento de Prótese Dentária , Falha de Restauração Dentária , Elasticidade , Vidro/química , Ligas de Ouro/química , Humanos , Teste de Materiais , Microscopia Eletrônica de Varredura , Maleabilidade , Dióxido de Silício/química , Aço Inoxidável/química , Estresse Mecânico , Propriedades de Superfície , Titânio/química , Zircônio/química
12.
J Endod ; 43(6): 995-1000, 2017 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-28416305

RESUMO

INTRODUCTION: The purpose of this study was to compare in vitro the fracture strength of root-filled and restored teeth with traditional endodontic cavity (TEC), conservative endodontic cavity (CEC), or ultraconservative "ninja" endodontic cavity (NEC) access. METHODS: Extracted human intact maxillary and mandibular premolars and molars were selected and assigned to control (intact teeth), TEC, CEC, or NEC groups (n = 10/group/type). Teeth in the TEC group were prepared following the principles of traditional endodontic cavities. Minimal CECs and NECs were plotted on cone-beam computed tomographic images. Then, teeth were endodontically treated and restored. The 160 specimens were then loaded to fracture in a mechanical material testing machine (LR30 K; Lloyd Instruments Ltd, Fareham, UK). The maximum load at fracture and fracture pattern (restorable or unrestorable) were recorded. Fracture loads were compared statistically, and the data were examined with analysis of variance and the Student-Newman-Keuls test for multiple comparisons. RESULTS: The mean load at fracture for TEC was significantly lower than the one for the CEC, NEC, and control groups for all types of teeth (P < .05), whereas no difference was observed among CEC, NEC, and intact teeth (P > .05). Unrestorable fractures were significantly more frequent in the TEC, CEC, and NEC groups than in the control group in each tooth type (P < .05). CONCLUSIONS: Teeth with TEC access showed lower fracture strength than the ones prepared with CEC or NEC. Ultraconservative "ninja" endodontic cavity access did not increase the fracture strength of teeth compared with the ones prepared with CEC. Intact teeth showed more restorable fractures than all the prepared ones.


Assuntos
Preparo da Cavidade Dentária/efeitos adversos , Fraturas dos Dentes/etiologia , Dente não Vital/parasitologia , Dente Pré-Molar/patologia , Força Compressiva , Preparo da Cavidade Dentária/métodos , Restauração Dentária Permanente/métodos , Análise do Estresse Dentário , Humanos , Dente Molar/patologia , Fraturas dos Dentes/patologia
13.
J Am Dent Assoc ; 137(11): 1555-61, 2006 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-17082282

RESUMO

BACKGROUND: The authors conducted a study to demonstrate potential applications of microcomputed tomography (microCT) in the analysis of tooth morphology. METHODS: The authors selected for microCT analysis five maxillary first molars with a second canal in the mesiobuccal (MB) root, five mandibular first molars with a mesial root possessing a considerable curvature and five single-canal premolars with complicated apical anatomy. The hardware device used in this study was a desktop X-ray microfocus CT scanner (SkyScan 1072, SkyScan bvba, Aartselaar, Belgium). RESULTS: The authors obtained a three-dimensional image from each of the 15 teeth. In three cases, the MB canals coalesced into one canal, while in the other two molars the canals were separate. Four of the five mandibular molars exhibited a single canal in the mesial root, which had a broad, flat appearance in a mesiodistal dimension. In the premolar teeth, the canals were independent; however, the apical delta and ramifications of the root canals were obvious, yet intricate. CONCLUSIONS: MicroCT offers a reproducible technique for 3-D noninvasive assessment of root canal systems. CLINICAL IMPLICATIONS: While this technique is not suitable for clinical use, it can be applied to improve preclinical training and analysis of fundamental procedures in endodontic and restorative treatment.


Assuntos
Imageamento Tridimensional/métodos , Dente Molar/diagnóstico por imagem , Tomografia Computadorizada por Raios X/métodos , Raiz Dentária/diagnóstico por imagem , Humanos , Dente Molar/anatomia & histologia , Raiz Dentária/anatomia & histologia
14.
Ann Stomatol (Roma) ; 7(1-2): 4-10, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27486505

RESUMO

AIM: To determine and compare the fracture resistance of endodontically treated teeth restored with a bulk fill flowable material (SDR) and a traditional resin composite. METHODS: Thirty maxillary and 30 mandibular first molars were selected based on similar dimensions. After cleaning, shaping and filling of the root canals and adhesive procedures, specimens were assigned to 3 subgroups for each tooth type (n=10): Group A: control group, including intact teeth; Group B: access cavities were restored with a traditional resin composite (EsthetX; Dentsply-Italy, Rome, Italy); Group C: access cavities were restored with a bulk fill flowable composite (SDR; Dentsply-Italy), except 1.5 mm layer of the occlusal surface that was restored with the same resin composite as Group B. The specimens were subjected to compressive force in a material static-testing machine until fracture occurred, the maximum fracture load of the specimens was measured (N) and the type of fracture was recorded as favorable or unfavorable. Data were statistically analyzed with one-way analysis of variance (ANOVA) and Bonferroni tests (P<0.05). RESULTS: No statistically significant differences were found among groups (P<0.05). Fracture resistance of endodontically treated teeth restored with a traditional resin composite and with a bulk fill flowable composite (SDR) was similar in both maxillary and mandibular molars and showed no significant decrease in fracture resistance compared to intact specimens. CONCLUSIONS: No significant difference was observed in the mechanical fracture resistance of endodontically treated molars restored with traditional resin composite restorations compared to bulk fill flowable composite restorations.

15.
J Indian Soc Periodontol ; 19(3): 273-8, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26229266

RESUMO

PURPOSE: So far, definitive implant abutments have been performed with high elastic modulus materials, which prevented any type of shock absorption of the chewing loads and as a consequence, the protection of the bone-fixture interface. This is particularly the case when the esthetic restorative material chosen is ceramic rather than composite resin. The adoption of an anisotropic abutment, characterized by an elastic deformability, could allow decreasing the impulse of chewing forces transmitted to the crestal bone. MATERIALS AND METHODS: According to research protocol, the mechanical resistance to cyclical load was evaluated in a tooth-colored fiber-reinforced abutment (TCFRA) prototype and compared to that of a titanium abutment (TA), thus eight TCFRAs and eight TAs were adhesively cemented on as many titanium implants. The swinging that the two types of abutments showed during the application of sinusoidal load was also analyzed. RESULTS: In the TA group, both fracture and deformation occurred in 12.5% of samples while debonding 62.5%. In the TCFRA group, only debonding was present in 37.5% of samples. In comparison to the TAs, the TCFRAs exhibited a greater swinging during the application of sinusoidal load. In the TA group, the extrusion prevailed, whereas in the TCFRA group, the intrusion was more frequent. CONCLUSION: The greater elasticity of TCFRA to the flexural load allows absorbing part of the transversal load applied on the fixture during the chewing function, thus reducing the stress on the bone-implant interface.

16.
J Oral Implantol ; 41(3): 240-50, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-23829685

RESUMO

In this study, the in vivo behavior of a custom-made three-dimensional (3D) synthetic bone substitute was evaluated when used as scaffold for sinus augmentation procedures in an animal model. The scaffold was a calcium phosphate ceramic fabricated by the direct rapid prototyping technique, dispense-plotting. The geometrical and chemical properties of the scaffold were first analyzed through light and electron scanning microscopes, helium picnometer, and semi-quantitative X-ray diffraction measurements. Then, 6 sheep underwent monolateral sinus augmentation with the fabricated scaffolds. The animals were euthanized after healing periods of 45 and 90 days, and block sections including the grafted area were obtained. Bone samples were subjected to micro computerized tomography, morphological and histomorphometric analyses. A complete integration of the scaffold was reported, with abundant deposition of newly formed bone tissue within the biomaterial pores. Moreover, initial foci of bone remodeling were mainly localized at the periphery of the implanted area after 45 days, while continuous bridges of mature lamellar bone were recorded in 90-day specimens. This evidence supports the hypothesis that bone regeneration proceeds from the periphery to the center of the sinus cavity. These results showed how a technique allowing control of porosity, pore design, and external shape of a ceramic bone substitute may be valuable for producing synthetic bone grafts with good clinical performances.


Assuntos
Regeneração Óssea , Substitutos Ósseos , Transplante Ósseo , Animais , Materiais Biocompatíveis , Fosfatos de Cálcio , Cerâmica , Ovinos
17.
Folia Histochem Cytobiol ; 52(4): 289-96, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25530465

RESUMO

INTRODUCTION: Root resorption is an undesirable but very frequently occurring sequel of orthodontic treatment. The aim of this study was to compare root resorption caused by either continuous (CF) or interrupted (IF) orthodontic force. MATERIAL AND METHODS: The study was performed on human subjects on 30 first upper and lower premolars scheduled for extraction for orthodontic reasons. During four weeks before extraction 12 teeth were subjected to either CF or IF. The force was generated by a segmental titanium-molybdenum alloy cantilever spring that was activated in buccal direction. Initially a force of 60 CentiNewton was used in both CF and IF groups, the force in the former, however, was reactivated every week for 4 weeks. There was no reactivation of force in the IF group after initial application. A morphometric analysis of root resorption was performed by microcomputed tomography and the extent of tooth movement was measured on stone casts. Furthermore, a Tartarate-Resistant Acidic Phosphatase activity (TRAP), the marker enzyme of osteoclasts and cementoclasts, was determined by histochemical method. The Mann-Whitney U test was used to compare the difference in measured parameters between treatment and control tooth groups. RESULTS: The number of resorption craters was significantly higher and their average volume almost twice as large in the CF compared to the IF group (p < 0.05). However, the distance of tooth displacement was similar for both groups. Cementoclasts were detected with the TRAP technique on the surface of two teeth only; both were subjected to continuous force. CONCLUSIONS: The use of IF leads to less destruction of root structure as opposed to continuous force while the same tooth movement was achieved.


Assuntos
Dente Pré-Molar/patologia , Ortodontia Interceptora , Reabsorção da Raiz , Dente Pré-Molar/diagnóstico por imagem , Humanos , Radiografia , Fatores de Tempo
18.
Ann Ist Super Sanita ; 49(3): 261-5, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24071605

RESUMO

OBJECTIVE: The aim of this study was to evaluate the influence of artifacts on the accuracy of linear measurements estimated with a common cone beam computed tomography (CBCT) system used in dental clinical practice, by comparing it with microCT system as standard reference. MATERIALS AND METHODS: Ten bovine bone cylindrical samples containing one implant each, able to provide both points of reference and image quality degradation, have been scanned by CBCT and microCT systems. Thanks to the software of the two systems, for each cylindrical sample, two diameters taken at different levels, by using implants different points as references, have been measured. Results have been analyzed by ANOVA and a significant statistically difference has been found. RESULTS AND DISCUSSION: Due to the obtained results, in this work it is possible to say that the measurements made with the two different instruments are still not statistically comparable, although in some samples were obtained similar performances and therefore not statistically significant. CONCLUSION: With the improvement of the hardware and software of CBCT systems, in the near future the two instruments will be able to provide similar performances.


Assuntos
Tomografia Computadorizada de Feixe Cônico/estatística & dados numéricos , Imageamento Tridimensional/estatística & dados numéricos , Microtomografia por Raio-X/estatística & dados numéricos , Análise de Variância , Animais , Bovinos , Implantes Dentários para Um Único Dente , Humanos , Processamento de Imagem Assistida por Computador , Software
19.
Ann Ist Super Sanita ; 49(3): 300-5, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24071611

RESUMO

INTRODUCTION: Micro-CT analysis is a powerful technique for a non-invasive evaluation of the morphometric parameters of trabecular bone samples. This elaboration requires a previous binarization of the images. A problem which arises from the binarization process is the partial volume artifact. Voxels at the external surface of the sample can contain both bone and air so thresholding operates an incorrect estimation of volume occupied by the two materials. AIM: The aim of this study is the extraction of bone volumetric information directly from the image histograms, by fitting them with a suitable set of functions. METHODS: Nineteen trabecular bone samples were extracted from femoral heads of eight patients subject to a hip arthroplasty surgery. Trabecular bone samples were acquired using micro-CT Scanner. Hystograms of the acquired images were computed and fitted by Gaussian-like functions accounting for: a) gray levels produced by the bone x-ray absorption, b) the portions of the image occupied by air and c) voxels that contain a mixture of bone and air. This latter contribution can be considered such as an estimation of the partial volume effect. RESULTS: The comparison of the proposed technique to the bone volumes measured by a reference instrument such as by a helium pycnometer show the method as a good way for an accurate bone volume calculation of trabecular bone samples.


Assuntos
Osso e Ossos/anatomia & histologia , Cabeça do Fêmur/diagnóstico por imagem , Absorciometria de Fóton , Algoritmos , Humanos , Processamento de Imagem Assistida por Computador , Imageamento por Ressonância Magnética , Tomografia Computadorizada por Raios X , Malha Trabecular/anatomia & histologia , Microtomografia por Raio-X
20.
PLoS One ; 8(5): e63256, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23696804

RESUMO

BACKGROUND: Evidence has been provided that a cell-based therapy combined with the use of bioactive materials may significantly improve bone regeneration prior to dental implant, although the identification of an ideal source of progenitor/stem cells remains to be determined. AIM: In the present research, the bone regenerative property of an emerging source of progenitor cells, the amniotic epithelial cells (AEC), loaded on a calcium-phosphate synthetic bone substitute, made by direct rapid prototyping (rPT) technique, was evaluated in an animal study. MATERIAL AND METHODS: Two blocks of synthetic bone substitute (∼0.14 cm(3)), alone or engineered with 1×10(6) ovine AEC (oAEC), were grafted bilaterally into maxillary sinuses of six adult sheep, an animal model chosen for its high translational value in dentistry. The sheep were then randomly divided into two groups and sacrificed at 45 and 90 days post implantation (p.i.). Tissue regeneration was evaluated in the sinus explants by micro-computer tomography (micro-CT), morphological, morphometric and biochemical analyses. RESULTS AND CONCLUSIONS: The obtained data suggest that scaffold integration and bone deposition are positively influenced by allotransplantated oAEC. Sinus explants derived from sheep grafted with oAEC engineered scaffolds displayed a reduced fibrotic reaction, a limited inflammatory response and an accelerated process of angiogenesis. In addition, the presence of oAEC significantly stimulated osteogenesis either by enhancing bone deposition or making more extent the foci of bone nucleation. Besides the modulatory role played by oAEC in the crucial events successfully guiding tissue regeneration (angiogenesis, vascular endothelial growth factor expression and inflammation), data provided herein show that oAEC were also able to directly participate in the process of bone deposition, as suggested by the presence of oAEC entrapped within the newly deposited osteoid matrix and by their ability to switch-on the expression of a specific bone-related protein (osteocalcin, OCN) when transplanted into host tissues.


Assuntos
Líquido Amniótico/citologia , Regeneração Óssea , Substitutos Ósseos , Células Epiteliais/transplante , Seio Maxilar/cirurgia , Animais , Células Cultivadas , Células Epiteliais/metabolismo , Expressão Gênica , Maxila/fisiologia , Maxila/cirurgia , Seio Maxilar/irrigação sanguínea , Carneiro Doméstico , Engenharia Tecidual , Alicerces Teciduais , Fator A de Crescimento do Endotélio Vascular/genética , Fator A de Crescimento do Endotélio Vascular/metabolismo , Microtomografia por Raio-X
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA