Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 104
Filtrar
1.
Brain ; 146(6): 2298-2315, 2023 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-36508327

RESUMO

Huntingtin (HTT)-lowering therapies show great promise in treating Huntington's disease. We have developed a microRNA targeting human HTT that is delivered in an adeno-associated serotype 5 viral vector (AAV5-miHTT), and here use animal behaviour, MRI, non-invasive proton magnetic resonance spectroscopy and striatal RNA sequencing as outcome measures in preclinical mouse studies of AAV5-miHTT. The effects of AAV5-miHTT treatment were evaluated in homozygous Q175FDN mice, a mouse model of Huntington's disease with severe neuropathological and behavioural phenotypes. Homozygous mice were used instead of the more commonly used heterozygous strain, which exhibit milder phenotypes. Three-month-old homozygous Q175FDN mice, which had developed acute phenotypes by the time of treatment, were injected bilaterally into the striatum with either formulation buffer (phosphate-buffered saline + 5% sucrose), low dose (5.2 × 109 genome copies/mouse) or high dose (1.3 × 1011 genome copies/mouse) AAV5-miHTT. Wild-type mice injected with formulation buffer served as controls. Behavioural assessments of cognition, T1-weighted structural MRI and striatal proton magnetic resonance spectroscopy were performed 3 months after injection, and shortly afterwards the animals were sacrificed to collect brain tissue for protein and RNA analysis. Motor coordination was assessed at 1-month intervals beginning at 2 months of age until sacrifice. Dose-dependent changes in AAV5 vector DNA level, miHTT expression and mutant HTT were observed in striatum and cortex of AAV5-miHTT-treated Huntington's disease model mice. This pattern of microRNA expression and mutant HTT lowering rescued weight loss in homozygous Q175FDN mice but did not affect motor or cognitive phenotypes. MRI volumetric analysis detected atrophy in four brain regions in homozygous Q175FDN mice, and treatment with high dose AAV5-miHTT rescued this effect in the hippocampus. Like previous magnetic resonance spectroscopy studies in Huntington's disease patients, decreased total N-acetyl aspartate and increased myo-inositol levels were found in the striatum of homozygous Q175FDN mice. These neurochemical findings were partially reversed with AAV5-miHTT treatment. Striatal transcriptional analysis using RNA sequencing revealed mutant HTT-induced changes that were partially reversed by HTT lowering with AAV5-miHTT. Striatal proton magnetic resonance spectroscopy analysis suggests a restoration of neuronal function, and striatal RNA sequencing analysis shows a reversal of transcriptional dysregulation following AAV5-miHTT in a homozygous Huntington's disease mouse model with severe pathology. The results of this study support the use of magnetic resonance spectroscopy in HTT-lowering clinical trials and strengthen the therapeutic potential of AAV5-miHTT in reversing severe striatal dysfunction in Huntington's disease.


Assuntos
Doença de Huntington , MicroRNAs , Humanos , Animais , Camundongos , Lactente , Doença de Huntington/metabolismo , MicroRNAs/genética , MicroRNAs/metabolismo , Corpo Estriado/metabolismo , Encéfalo/patologia , Proteína Huntingtina/genética , Proteína Huntingtina/metabolismo , Modelos Animais de Doenças
2.
Alzheimers Dement ; 2024 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-38877688

RESUMO

INTRODUCTION: TAR DNA-binding protein 43 (TDP-43) is a highly prevalent proteinopathy that is involved in neurodegenerative processes, including axonal damage. To date, no ante mortem biomarkers exist for TDP-43, and few studies have directly assessed its impact on neuroimaging measures utilizing pathologic quantification. METHODS: Ante mortem diffusion-weighted images were obtained from community-dwelling older adults. Regression models calculated the relationship between post mortem TDP-43 burden and ante mortem fractional anisotropy (FA) within each voxel in connection with the hippocampus, controlling for coexisting Alzheimer's disease and demographics. RESULTS: Results revealed a significant negative relationship (false discovery rate [FDR] corrected p < .05) between post mortem TDP-43 and ante mortem FA in one cluster within the left medial temporal lobe connecting to the parahippocampal cortex, entorhinal cortex, and cingulate, aligning with the ventral subdivision of the cingulum. FA within this cluster was associated with cognition. DISCUSSION: Greater TDP-43 burden is associated with lower FA within the limbic system, which may contribute to impairment in learning and memory. HIGHLIGHTS: Post mortem TDP-43 pathological burden is associated with reduced ante mortem fractional anisotropy. Reduced FA located in the parahippocampal portion of the cingulum. FA in this area was associated with reduced episodic and semantic memory. FA in this area was associated with increased inward hippocampal surface deformation.

3.
BMC Bioinformatics ; 24(1): 271, 2023 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-37391692

RESUMO

BACKGROUND: Dealing with the high dimension of both neuroimaging data and genetic data is a difficult problem in the association of genetic data to neuroimaging. In this article, we tackle the latter problem with an eye toward developing solutions that are relevant for disease prediction. Supported by a vast literature on the predictive power of neural networks, our proposed solution uses neural networks to extract from neuroimaging data features that are relevant for predicting Alzheimer's Disease (AD) for subsequent relation to genetics. The neuroimaging-genetic pipeline we propose is comprised of image processing, neuroimaging feature extraction and genetic association steps. We present a neural network classifier for extracting neuroimaging features that are related with the disease. The proposed method is data-driven and requires no expert advice or a priori selection of regions of interest. We further propose a multivariate regression with priors specified in the Bayesian framework that allows for group sparsity at multiple levels including SNPs and genes. RESULTS: We find the features extracted with our proposed method are better predictors of AD than features used previously in the literature suggesting that single nucleotide polymorphisms (SNPs) related to the features extracted by our proposed method are also more relevant for AD. Our neuroimaging-genetic pipeline lead to the identification of some overlapping and more importantly some different SNPs when compared to those identified with previously used features. CONCLUSIONS: The pipeline we propose combines machine learning and statistical methods to benefit from the strong predictive performance of blackbox models to extract relevant features while preserving the interpretation provided by Bayesian models for genetic association. Finally, we argue in favour of using automatic feature extraction, such as the method we propose, in addition to ROI or voxelwise analysis to find potentially novel disease-relevant SNPs that may not be detected when using ROIs or voxels alone.


Assuntos
Doença de Alzheimer , Neuroimagem , Humanos , Teorema de Bayes , Processamento de Imagem Assistida por Computador , Doença de Alzheimer/diagnóstico por imagem , Doença de Alzheimer/genética , Redes Neurais de Computação
4.
Can J Neurol Sci ; 50(4): 515-528, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-35614521

RESUMO

BACKGROUND: A large proportion of Alzheimer's disease (AD) patients have coexisting subcortical vascular dementia (SVaD), a condition referred to as mixed dementia (MixD). Brain imaging features of MixD presumably include those of cerebrovascular disease and AD pathology, but are difficult to characterize due to their heterogeneity. OBJECTIVE: To perform an exploratory analysis of conventional and non-conventional structural magnetic resonance imaging (MRI) abnormalities in MixD and to compare them to those observed in AD and SVaD. METHODS: We conducted a cross-sectional, region-of-interest-based analysis of 1) hyperintense white-matter signal abnormalities (WMSA) on T2-FLAIR and hypointense WMSA on T1-weighted MRI; 2) diffusion tensor imaging; 3) quantitative susceptibility mapping; and 4) effective transverse relaxation rate (R2*) in N = 17 participants (AD:5, SVaD:5, MixD:7). General linear model was used to explore group differences in these brain imaging measures. RESULTS: Model findings suggested imaging characteristics specific to our MixD group, including 1) higher burden of WMSAs on T1-weighted MRI (versus both AD and SVaD); 2) frontal lobar preponderance of WMSAs on both T2-FLAIR and T1-weighted MRI; 3) higher fractional anisotropy values within normal-appear white-matter tissues (versus SVaD, but not AD); and 4) lower R2* values within the T2-FLAIR WMSA areas (versus both AD and SVaD). CONCLUSION: These findings suggest a preliminary picture of the location and type of brain imaging characteristics associated with MixD. Future imaging studies may employ region-specific hypotheses to distinguish MixD more rigorously from AD or SVaD.


Assuntos
Doença de Alzheimer , Demência Vascular , Demências Mistas , Humanos , Demência Vascular/diagnóstico por imagem , Doença de Alzheimer/diagnóstico por imagem , Doença de Alzheimer/patologia , Imagem de Tensor de Difusão , Estudos Transversais , Encéfalo/diagnóstico por imagem , Encéfalo/patologia , Imageamento por Ressonância Magnética/métodos
5.
Neuroimage ; 263: 119621, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36089183

RESUMO

Neuroimaging-based brain-age estimation via machine learning has emerged as an important new approach for studying brain aging. The difference between one's estimated brain age and chronological age, the brain age gap (BAG), has been proposed as an Alzheimer's Disease (AD) biomarker. However, most past studies on the BAG have been cross-sectional. Quantifying longitudinal changes in an individual's BAG temporal pattern would likely improve prediction of AD progression and clinical outcome based on neurophysiological changes. To fill this gap, our study conducted predictive modeling using a large neuroimaging dataset with up to 8 years of follow-up to examine the temporal patterns of the BAG's trajectory and how it varies by subject-level characteristics (sex, APOEɛ4 carriership) and disease status. Specifically, we explored the pattern and rate of change in BAG over time in individuals who remain stable with normal cognition or mild cognitive impairment (MCI), as well as individuals who progress to clinical AD. Combining multimodal imaging data in a support vector regression model to estimate brain age yielded improved performance over single modality. Multilevel modeling results showed the BAG followed a linear increasing trajectory with a significantly faster rate in individuals with MCI who progressed to AD compared to cognitively normal or MCI individuals who did not progress. The dynamic changes in the BAG during AD progression were further moderated by sex and APOEɛ4 carriership. Our findings demonstrate the BAG as a potential biomarker for understanding individual specific temporal patterns related to AD progression.


Assuntos
Doença de Alzheimer , Disfunção Cognitiva , Humanos , Imageamento por Ressonância Magnética/métodos , Doença de Alzheimer/diagnóstico por imagem , Estudos Transversais , Neuroimagem/métodos , Encéfalo/diagnóstico por imagem , Disfunção Cognitiva/diagnóstico por imagem , Biomarcadores , Progressão da Doença
6.
Opt Lett ; 46(16): 3833-3836, 2021 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-34388753

RESUMO

Megahertz-rate optical coherence tomography angiography (OCTA) is highly anticipated as an ultrafast imaging tool in clinical settings. However, shot-noise-limited sensitivity is inevitably reduced in high-speed imaging systems. In this Letter, we present a coherent buffer averaging technique for use with a Fourier-domain mode-locked (FDML) laser to improve OCTA contrast at 1060 nm MHz-rate retinal imaging. Full characterization of spectral variations among the FDML buffers and a numerical correction method are also presented, with the results demonstrating a 10-fold increase in the phase alignment among buffers. Coherent buffer averaging provided better OCTA contrast than the conventional multi-frame averaging approach with a faster acquisition time.


Assuntos
Lasers , Tomografia de Coerência Óptica , Angiografia , Retina
7.
Neuroimage ; 223: 117271, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-32835824

RESUMO

Down Syndrome is a chromosomal disorder that affects the development of cerebellar cortical lobules. Impaired neurogenesis in the cerebellum varies among different types of neuronal cells and neuronal layers. In this study, we developed an imaging analysis framework that utilizes gadolinium-enhanced ex vivo mouse brain MRI. We extracted the middle Purkinje layer of the mouse cerebellar cortex, enabling the estimation of the volume, thickness, and surface area of the entire cerebellar cortex, the internal granular layer, and the molecular layer in the Tc1 mouse model of Down Syndrome. The morphometric analysis of our method revealed that a larger proportion of the cerebellar thinning in this model of Down Syndrome resided in the inner granule cell layer, while a larger proportion of the surface area shrinkage was in the molecular layer.


Assuntos
Córtex Cerebelar/diagnóstico por imagem , Córtex Cerebelar/patologia , Síndrome de Down/diagnóstico por imagem , Síndrome de Down/patologia , Imageamento por Ressonância Magnética/métodos , Neurônios/patologia , Animais , Meios de Contraste , Modelos Animais de Doenças , Gadolínio/administração & dosagem , Aumento da Imagem/métodos , Masculino , Camundongos Endogâmicos C57BL , Coloração e Rotulagem/métodos
8.
Hum Brain Mapp ; 41(1): 5-16, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31507022

RESUMO

18 F-fluorodeoxyglucose positron emission tomography (FDG-PET) enables in-vivo capture of the topographic metabolism patterns in the brain. These images have shown great promise in revealing the altered metabolism patterns in Alzheimer's disease (AD). The AD pathology is progressive, and leads to structural and functional alterations that lie on a continuum. There is a need to quantify the altered metabolism patterns that exist on a continuum into a simple measure. This work proposes a 3D convolutional neural network with residual connections that generates a probability score useful for interpreting the FDG-PET images along the continuum of AD. This network is trained and tested on images of stable normal control and stable Dementia of the Alzheimer's type (sDAT) subjects, achieving an AUC of 0.976 via repeated fivefold cross-validation. An independent test set consisting of images in between the two extreme ends of the DAT spectrum is used to further test the generalization performance of the network. Classification performance of 0.811 AUC is achieved in the task of predicting conversion of mild cognitive impairment to DAT for conversion time of 0-3 years. The saliency and class activation maps, which highlight the regions of the brain that are most important to the classification task, implicate many known regions affected by DAT including the posterior cingulate cortex, precuneus, and hippocampus.


Assuntos
Doença de Alzheimer/diagnóstico por imagem , Córtex Cerebral/diagnóstico por imagem , Disfunção Cognitiva/diagnóstico por imagem , Redes Neurais de Computação , Neuroimagem/métodos , Tomografia por Emissão de Pósitrons/métodos , Idoso , Idoso de 80 Anos ou mais , Doença de Alzheimer/fisiopatologia , Disfunção Cognitiva/fisiopatologia , Feminino , Fluordesoxiglucose F18 , Hipocampo/diagnóstico por imagem , Humanos , Masculino , Compostos Radiofarmacêuticos
9.
Hum Brain Mapp ; 41(14): 4127-4147, 2020 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-32614505

RESUMO

Biomarkers for dementia of Alzheimer's type (DAT) are sought to facilitate accurate prediction of the disease onset, ideally predating the onset of cognitive deterioration. T1-weighted magnetic resonance imaging (MRI) is a commonly used neuroimaging modality for measuring brain structure in vivo, potentially providing information enabling the design of biomarkers for DAT. We propose a novel biomarker using structural MRI volume-based features to compute a similarity score for the individual's structural patterns relative to those observed in the DAT group. We employed ensemble-learning framework that combines structural features in most discriminative ROIs to create an aggregate measure of neurodegeneration in the brain. This classifier is trained on 423 stable normal control (NC) and 330 DAT subjects, where clinical diagnosis is likely to have the highest certainty. Independent validation on 8,834 unseen images from ADNI, AIBL, OASIS, and MIRIAD Alzheimer's disease (AD) databases showed promising potential to predict the development of DAT depending on the time-to-conversion (TTC). Classification performance on stable versus progressive mild cognitive impairment (MCI) groups achieved an AUC of 0.81 for TTC of 6 months and 0.73 for TTC of up to 7 years, achieving state-of-the-art results. The output score, indicating similarity to patterns seen in DAT, provides an intuitive measure of how closely the individual's brain features resemble the DAT group. This score can be used for assessing the presence of AD structural atrophy patterns in normal aging and MCI stages, as well as monitoring the progression of the individual's brain along with the disease course.


Assuntos
Doença de Alzheimer/diagnóstico , Doença de Alzheimer/patologia , Disfunção Cognitiva/diagnóstico , Disfunção Cognitiva/patologia , Progressão da Doença , Imageamento por Ressonância Magnética/métodos , Neuroimagem/métodos , Idoso , Doença de Alzheimer/líquido cefalorraquidiano , Doença de Alzheimer/diagnóstico por imagem , Biomarcadores , Disfunção Cognitiva/líquido cefalorraquidiano , Disfunção Cognitiva/diagnóstico por imagem , Conjuntos de Dados como Assunto , Humanos , Estudos Longitudinais , Prognóstico , Aprendizado de Máquina Supervisionado , Fatores de Tempo
10.
Hum Hered ; 84(2): 59-72, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31430752

RESUMO

BACKGROUND/AIMS: Alzheimer's disease (AD) is a chronic neurodegenerative disease that causes memory loss and a decline in cognitive abilities. AD is the sixth leading cause of death in the USA, affecting an estimated 5 million Americans. To assess the association between multiple genetic variants and multiple measurements of structural changes in the brain, a recent study of AD used a multivariate measure of linear dependence, the RV coefficient. The authors decomposed the RV coefficient into contributions from individual variants and displayed these contributions graphically. METHODS: We investigate the properties of such a "contribution plot" in terms of an underlying linear model, and discuss shrinkage estimation of the components of the plot when the correlation signal may be sparse. RESULTS: The contribution plot is applied to simulated data and to genomic and brain imaging data from the Alzheimer's Disease Neuroimaging Initiative (ADNI). CONCLUSIONS: The contribution plot with shrinkage estimation can reveal truly associated explanatory variables.


Assuntos
Doença de Alzheimer/diagnóstico por imagem , Doença de Alzheimer/genética , Biomarcadores/metabolismo , Encéfalo/diagnóstico por imagem , Neuroimagem , Apolipoproteínas E/genética , Simulação por Computador , Genótipo , Humanos , Fenótipo , Polimorfismo de Nucleotídeo Único/genética
11.
Hum Brain Mapp ; 40(5): 1507-1527, 2019 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-30431208

RESUMO

When analyzing large multicenter databases, the effects of multiple confounding covariates increase the variability in the data and may reduce the ability to detect changes due to the actual effect of interest, for example, changes due to disease. Efficient ways to evaluate the effect of covariates toward the data harmonization are therefore important. In this article, we showcase techniques to assess the "goodness of harmonization" of covariates. We analyze 7,656 MR images in the multisite, multiscanner Alzheimer's Disease Neuroimaging Initiative (ADNI) database. We present a comparison of three methods for estimating total intracranial volume to assess their robustness and correct the brain structure volumes using the residual method and the proportional (normalization by division) method. We then evaluated the distribution of brain structure volumes over the entire ADNI database before and after accounting for multiple covariates such as total intracranial volume, scanner field strength, sex, and age using two techniques: (a) Zscapes, a panoramic visualization technique to analyze the entire database and (b) empirical cumulative distributions functions. The results from this study highlight the importance of assessing the goodness of data harmonization as a necessary preprocessing step when pooling large data set with multiple covariates, prior to further statistical data analysis.


Assuntos
Doença de Alzheimer/diagnóstico por imagem , Encéfalo/diagnóstico por imagem , Idoso , Idoso de 80 Anos ou mais , Envelhecimento , Disfunção Cognitiva/diagnóstico por imagem , Estudos Transversais , Interpretação Estatística de Dados , Bases de Dados Factuais , Progressão da Doença , Feminino , Humanos , Processamento de Imagem Assistida por Computador , Estudos Longitudinais , Imageamento por Ressonância Magnética , Masculino , Reprodutibilidade dos Testes , Caracteres Sexuais
12.
Stat Appl Genet Mol Biol ; 16(5-6): 349-365, 2017 11 27.
Artigo em Inglês | MEDLINE | ID: mdl-29091582

RESUMO

Using publicly-available data from the Alzheimer's Disease Neuroimaging Initiative, we investigate the joint association between single-nucleotide polymorphisms (SNPs) in previously established linkage regions for Alzheimer's disease (AD) and rates of decline in brain structure. In an initial, discovery stage of analysis, we applied a weighted RV test to assess the association between 75,845 SNPs in the Alzgene linkage regions and rates of change in structural MRI measurements for 56 brain regions affected by AD, in 632 subjects. After confirming association, we selected refined lists of 1694 and 22 SNPs via a bootstrap-enhanced sparse canonical correlation analysis. In a final, validation stage, we confirmed association between the refined list of 1694 SNPs and the imaging phenotypes in an independent data set. Genes corresponding to priority SNPs having the highest contribution in the validation data have previously been implicated or hypothesized to be implicated in AD, including GCLC, IDE, and STAMBP1andFAS. Though the effect sizes of the 1694 SNPs in the priority set are likely small, further investigation within this set may advance understanding of the missing heritability in AD. Our analysis addresses challenges in current imaging-genetics studies such as biased sampling designs and high-dimensional data with low association signal.


Assuntos
Encéfalo/metabolismo , Ligação Genética , Análise Multivariada , Polimorfismo de Nucleotídeo Único , Alelos , Doença de Alzheimer/diagnóstico por imagem , Doença de Alzheimer/genética , Encéfalo/diagnóstico por imagem , Mapeamento Encefálico , Estudo de Associação Genômica Ampla , Humanos , Processamento de Imagem Assistida por Computador , Imageamento por Ressonância Magnética , Reprodutibilidade dos Testes
13.
Am J Physiol Regul Integr Comp Physiol ; 308(9): R755-68, 2015 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-25740339

RESUMO

Zebrafish are increasingly being used as a model of vertebrate cardiology due to mammalian-like cardiac properties in many respects. The size and fecundity of zebrafish make them suitable for large-scale genetic and pharmacological screening. In larger mammalian hearts, optical mapping is often used to investigate the interplay between voltage and calcium dynamics and to investigate their respective roles in arrhythmogenesis. This report outlines the construction of an optical mapping system for use with zebrafish hearts, using the voltage-sensitive dye RH 237 and the calcium indicator dye Rhod-2 using two industrial-level CCD cameras. With the use of economical cameras and a common 532-nm diode laser for excitation, the rate dependence of voltage and calcium dynamics within the atrial and ventricular compartments can be simultaneously determined. At 140 beats/min, the atrial action potential duration was 36 ms and the transient duration was 53 ms. With the use of a programmable electrical stimulator, a shallow rate dependence of 3 and 4 ms per 100 beats/min was observed, respectively. In the ventricle the action potential duration was 109 ms and the transient duration was 124 ms, with a steeper rate dependence of 12 and 16 ms per 100 beats/min. Synchronous electrocardiograms and optical mapping recordings were recorded, in which the P-wave aligns with the atrial voltage peak and R-wave aligns with the ventricular peak. A simple optical pathway and imaging chamber are detailed along with schematics for the in-house construction of the electrocardiogram amplifier and electrical stimulator. Laboratory procedures necessary for zebrafish heart isolation, cannulation, and loading are also presented.


Assuntos
Cálcio/metabolismo , Técnicas Eletrofisiológicas Cardíacas , Coração/inervação , Imagens com Corantes Sensíveis à Voltagem , Peixe-Zebra/fisiologia , Potenciais de Ação/fisiologia , Animais , Função Atrial/fisiologia , Estimulação Elétrica , Eletrocardiografia , Fenômenos Eletrofisiológicos , Coração/fisiologia , Função Ventricular/fisiologia
14.
Am J Physiol Regul Integr Comp Physiol ; 306(11): R823-36, 2014 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-24671241

RESUMO

The zebrafish (Danio rerio) has emerged as an important model for developmental cardiovascular (CV) biology; however, little is known about the cardiac function of the adult zebrafish enabling it to be used as a model of teleost CV biology. Here, we describe electrophysiological parameters, such as heart rate (HR), action potential duration (APD), and atrioventricular (AV) delay, in the zebrafish heart over a range of physiological temperatures (18-28°C). Hearts were isolated and incubated in a potentiometric dye, RH-237, enabling electrical activity assessment in several distinct regions of the heart simultaneously. Integration of a rapid thermoelectric cooling system facilitated the investigation of acute changes in temperature on critical electrophysiological parameters in the zebrafish heart. While intrinsic HR varied considerably between fish, the ex vivo preparation exhibited impressively stable HRs and sinus rhythm for more than 5 h, with a mean HR of 158 ± 9 bpm (means ± SE; n = 20) at 28°C. Atrial and ventricular APDs at 50% repolarization (APD50) were 33 ± 1 ms and 98 ± 2 ms, respectively. Excitation originated in the atrium, and there was an AV delay of 61 ± 3 ms prior to activation of the ventricle at 28°C. APD and AV delay varied between hearts beating at unique HRs; however, APD and AV delay did not appear to be statistically dependent on intrinsic basal HR, likely due to the innate beat-to-beat variability within each heart. As hearts were cooled to 18°C (by 1°C increments), HR decreased by ~40%, and atrial and ventricular APD50 increased by a factor of ~3 and 2, respectively. The increase in APD with cooling was disproportionate at different levels of repolarization, indicating unique temperature sensitivities for ion currents at different phases of the action potential. The effect of temperature was more apparent at lower levels of repolarization and, as a whole, the atrial APD was the cardiac parameter most affected by acute temperature change. In conclusion, this study describes a preparation enabling the in-depth analysis of transmembrane potential dynamics in whole zebrafish hearts. Because the zebrafish offers some critical advantages over the murine model for cardiac electrophysiology, optical mapping studies utilizing zebrafish offer insightful information into the understanding and treatment of human cardiac arrhythmias, as well as serving as a model for other teleosts.


Assuntos
Potenciais de Ação/fisiologia , Nó Atrioventricular/fisiologia , Frequência Cardíaca/fisiologia , Coração/inervação , Coração/fisiologia , Temperatura , Peixe-Zebra/fisiologia , Animais , Função Atrial/fisiologia , Técnicas Eletrofisiológicas Cardíacas , Concentração de Íons de Hidrogênio , Modelos Animais , Função Ventricular/fisiologia , Imagens com Corantes Sensíveis à Voltagem
15.
Front Neurosci ; 18: 1331677, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38384484

RESUMO

Background: Frontotemporal dementia (FTD) represents a collection of neurobehavioral and neurocognitive syndromes that are associated with a significant degree of clinical, pathological, and genetic heterogeneity. Such heterogeneity hinders the identification of effective biomarkers, preventing effective targeted recruitment of participants in clinical trials for developing potential interventions and treatments. In the present study, we aim to automatically differentiate patients with three clinical phenotypes of FTD, behavioral-variant FTD (bvFTD), semantic variant PPA (svPPA), and nonfluent variant PPA (nfvPPA), based on their structural MRI by training a deep neural network (DNN). Methods: Data from 277 FTD patients (173 bvFTD, 63 nfvPPA, and 41 svPPA) recruited from two multi-site neuroimaging datasets: the Frontotemporal Lobar Degeneration Neuroimaging Initiative and the ARTFL-LEFFTDS Longitudinal Frontotemporal Lobar Degeneration databases. Raw T1-weighted MRI data were preprocessed and parcellated into patch-based ROIs, with cortical thickness and volume features extracted and harmonized to control the confounding effects of sex, age, total intracranial volume, cohort, and scanner difference. A multi-type parallel feature embedding framework was trained to classify three FTD subtypes with a weighted cross-entropy loss function used to account for unbalanced sample sizes. Feature visualization was achieved through post-hoc analysis using an integrated gradient approach. Results: The proposed differential diagnosis framework achieved a mean balanced accuracy of 0.80 for bvFTD, 0.82 for nfvPPA, 0.89 for svPPA, and an overall balanced accuracy of 0.84. Feature importance maps showed more localized differential patterns among different FTD subtypes compared to groupwise statistical mapping. Conclusion: In this study, we demonstrated the efficiency and effectiveness of using explainable deep-learning-based parallel feature embedding and visualization framework on MRI-derived multi-type structural patterns to differentiate three clinically defined subphenotypes of FTD: bvFTD, nfvPPA, and svPPA, which could help with the identification of at-risk populations for early and precise diagnosis for intervention planning.

16.
JAMA Surg ; 2024 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-38598191

RESUMO

Importance: Prior studies demonstrated consistent associations of low skeletal muscle mass assessed on surgical planning scans with postoperative morbidity and mortality. The increasing availability of imaging artificial intelligence enables development of more comprehensive imaging biomarkers to objectively phenotype frailty in surgical patients. Objective: To evaluate the associations of body composition scores derived from multiple skeletal muscle and adipose tissue measurements from automated segmentation of computed tomography (CT) with the Hospital Frailty Risk Score (HFRS) and adverse outcomes after abdominal surgery. Design, Setting, and Participants: This retrospective cohort study used CT imaging and electronic health record data from a random sample of adults who underwent abdominal surgery at 20 medical centers within Kaiser Permanente Northern California from January 1, 2010, to December 31, 2020. Data were analyzed from April 1, 2022, to December 1, 2023. Exposure: Body composition derived from automated analysis of multislice abdominal CT scans. Main Outcomes and Measures: The primary outcome of the study was all-cause 30-day postdischarge readmission or postoperative mortality. The secondary outcome was 30-day postoperative morbidity among patients undergoing abdominal surgery who were sampled for reporting to the National Surgical Quality Improvement Program. Results: The study included 48 444 adults; mean [SD] age at surgery was 61 (17) years, and 51% were female. Using principal component analysis, 3 body composition scores were derived: body size, muscle quantity and quality, and distribution of adiposity. Higher muscle quantity and quality scores were inversely correlated (r = -0.42; 95% CI, -0.43 to -0.41) with the HFRS and associated with a reduced risk of 30-day readmission or mortality (quartile 4 vs quartile 1: relative risk, 0.61; 95% CI, 0.56-0.67) and 30-day postoperative morbidity (quartile 4 vs quartile 1: relative risk, 0.59; 95% CI, 0.52-0.67), independent of sex, age, comorbidities, body mass index, procedure characteristics, and the HFRS. In contrast to the muscle score, scores for body size and greater subcutaneous and intermuscular vs visceral adiposity had inconsistent associations with postsurgical outcomes and were attenuated and only associated with 30-day postoperative morbidity after adjustment for the HFRS. Conclusions and Relevance: In this study, higher muscle quantity and quality scores were correlated with frailty and associated with 30-day readmission and postoperative mortality and morbidity, whereas body size and adipose tissue distribution scores were not correlated with patient frailty and had inconsistent associations with surgical outcomes. The findings suggest that assessment of muscle quantity and quality on CT can provide an objective measure of patient frailty that would not otherwise be clinically apparent and that may complement existing risk stratification tools to identify patients at high risk of mortality, morbidity, and readmission.

17.
Acta Neuropathol Commun ; 12(1): 19, 2024 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-38303097

RESUMO

Excitotoxicity from the impairment of glutamate uptake constitutes an important mechanism in neurodegenerative diseases such as Alzheimer's, multiple sclerosis, and Parkinson's disease. Within the eye, excitotoxicity is thought to play a critical role in retinal ganglion cell death in glaucoma, diabetic retinopathy, retinal ischemia, and optic nerve injury, yet how excitotoxic injury impacts different retinal layers is not well understood. Here, we investigated the longitudinal effects of N-methyl-D-aspartate (NMDA)-induced excitotoxic retinal injury in a rat model using deep learning-assisted retinal layer thickness estimation. Before and after unilateral intravitreal NMDA injection in nine adult Long Evans rats, spectral-domain optical coherence tomography (OCT) was used to acquire volumetric retinal images in both eyes over 4 weeks. Ten retinal layers were automatically segmented from the OCT data using our deep learning-based algorithm. Retinal degeneration was evaluated using layer-specific retinal thickness changes at each time point (before, and at 3, 7, and 28 days after NMDA injection). Within the inner retina, our OCT results showed that retinal thinning occurred first in the inner plexiform layer at 3 days after NMDA injection, followed by the inner nuclear layer at 7 days post-injury. In contrast, the retinal nerve fiber layer exhibited an initial thickening 3 days after NMDA injection, followed by normalization and thinning up to 4 weeks post-injury. Our results demonstrated the pathological cascades of NMDA-induced neurotoxicity across different layers of the retina. The early inner plexiform layer thinning suggests early dendritic shrinkage, whereas the initial retinal nerve fiber layer thickening before subsequent normalization and thinning indicates early inflammation before axonal loss and cell death. These findings implicate the inner plexiform layer as an early imaging biomarker of excitotoxic retinal degeneration, whereas caution is warranted when interpreting the ganglion cell complex combining retinal nerve fiber layer, ganglion cell layer, and inner plexiform layer thicknesses in conventional OCT measures. Deep learning-assisted retinal layer segmentation and longitudinal OCT monitoring can help evaluate the different phases of retinal layer damage upon excitotoxicity.


Assuntos
Aprendizado Profundo , Degeneração Retiniana , Ratos , Animais , Degeneração Retiniana/induzido quimicamente , Degeneração Retiniana/diagnóstico por imagem , Degeneração Retiniana/patologia , Tomografia de Coerência Óptica/métodos , N-Metilaspartato/toxicidade , Ratos Long-Evans , Retina/patologia , Células Ganglionares da Retina/patologia , Fibras Nervosas/patologia
18.
J Alzheimers Dis ; 92(2): 513-527, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36776061

RESUMO

BACKGROUND: The A/T/N framework allows for the assessment of pathology-specific markers of MRI-derived structural atrophy and hypometabolism on 18FDG-PET. However, how these measures relate to each other locally and distantly across pathology-defined A/T/N groups is currently unclear. OBJECTIVE: To determine the regions of association between atrophy and hypometabolism in A/T/N groups both within and across time points. METHODS: We examined multivariate multimodal neuroimaging relationships between MRI and 18FDG-PET among suspected non-Alzheimer's disease pathology (SNAP) (A-T/N+; n = 14), Amyloid Only (A+T-N-; n = 24) and Probable AD (A+T+N+; n = 77) groups. Sparse canonical correlation analyses were employed to model spatially disjointed regions of association between MRI and 18FDG-PET data. These relationships were assessed at three combinations of time points -cross-sectionally, between baseline visits and between month 12 (M-12) follow-up visits, as well as longitudinally between baseline and M-12 follow-up. RESULTS: In the SNAP group, spatially overlapping relationships between atrophy and hypometabolism were apparent in the bilateral temporal lobes when both modalities were assessed at the M-12 timepoint. Amyloid-Only subjects showed spatially discordant distributed atrophy-hypometabolism relationships at all time points assessed. In Probable AD subjects, local correlations were evident in the bilateral temporal lobes when both modalities were assessed at baseline and at M-12. Across groups, hypometabolism at baseline correlated with non-local, or distant, atrophy at M-12. CONCLUSION: These results support the view that local concordance of atrophy and hypometabolism is the result of a tau-mediated process driving neurodegeneration.


Assuntos
Doença de Alzheimer , Fluordesoxiglucose F18 , Humanos , Tomografia por Emissão de Pósitrons/métodos , Doença de Alzheimer/diagnóstico por imagem , Doença de Alzheimer/patologia , Neuroimagem/métodos , Imageamento por Ressonância Magnética/métodos , Atrofia/patologia , Proteínas tau/metabolismo , Encéfalo/patologia
19.
J Glaucoma ; 32(1): 48-56, 2023 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-36584358

RESUMO

PRCIS: Glaucoma was associated with axial bowing and rotation of Bruchs membrane opening (BMO) and anterior laminar insertion (ALI), skewed neural canal, and deeper anterior lamina cribrosa surface (ALCS). Longer axial length was associated with wider, longer, and more skewed neural canal and flatter ALCS. PURPOSE: Investigate the effects of myopia and glaucoma in the prelaminar neural canal and anterior lamina cribrosa using 1060-nm swept-source optical coherence tomography. PATIENTS: 19 control (38 eyes) and 38 glaucomatous subjects (63 eyes). MATERIALS AND METHODS: Participants were imaged with swept-source optical coherence tomography, and the images were analyzed for the BMO and ALI dimensions, prelaminar neural canal dimensions, and ALCS depth. RESULTS: Glaucomatous eyes had more bowed and nasally rotated BMO and ALI, more horizontally skewed prelaminar neural canal, and deeper ALCS than the control eyes. Increased axial length was associated with a wider, longer, and more horizontally skewed neural canal and a decrease in the ALCS depth and curvature. CONCLUSION: Our findings suggest that glaucomatous posterior bowing or cupping of lamina cribrosa can be significantly confounded by the myopic expansion of the neural canal. This may be related to higher glaucoma risk associated with myopia from decreased compliance and increased susceptibility to IOP-related damage of LC being pulled taut.


Assuntos
Glaucoma , Miopia , Disco Óptico , Humanos , Tomografia de Coerência Óptica/métodos , Tubo Neural , Pressão Intraocular , Glaucoma/complicações , Glaucoma/diagnóstico , Miopia/complicações , Miopia/diagnóstico
20.
Brain Commun ; 5(1): fcac333, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36632182

RESUMO

A large proportion of familial frontotemporal dementia is caused by TAR DNA-binding protein 43 (transactive response DNA-binding protein 43 kDa) proteinopathies. Accordingly, carriers of autosomal dominant mutations in the genes associated with TAR DNA-binding protein 43 aggregation, such as Chromosome 9 open reading frame 72 (C9orf72) or progranulin (GRN), are at risk of later developing frontotemporal dementia. Brain imaging abnormalities that develop before dementia onset in mutation carriers may serve as proxies for the presymptomatic stages of familial frontotemporal dementia due to a genetic cause. Our study objective was to investigate brain MRI-based white-matter changes in predementia participants carrying mutations in C9orf72 or GRN genes. We analysed mutation carriers and their family member controls (noncarriers) from the University of British Columbia familial frontotemporal dementia study. First, a total of 42 participants (8 GRN carriers; 11 C9orf72 carriers; 23 noncarriers) had longitudinal T1-weighted MRI over ∼2 years. White-matter signal hypointensities were segmented and volumes were calculated for each participant. General linear models were applied to compare the baseline burden and the annualized rate of accumulation of signal abnormalities among mutation carriers and noncarriers. Second, a total of 60 participants (9 GRN carriers; 17 C9orf72 carriers; 34 noncarriers) had cross-sectional diffusion tensor MRI available. For each participant, we calculated the average fractional anisotropy and mean, radial and axial diffusivity parameter values within the normal-appearing white-matter tissues. General linear models were applied to compare whether mutation carriers and noncarriers had different trends in diffusion tensor imaging parameter values as they neared the expected age of onset. Baseline volumes of white-matter signal abnormalities were not significantly different among mutation carriers and noncarriers. Longitudinally, GRN carriers had significantly higher annualized rates of accumulation (estimated mean: 15.87%/year) compared with C9orf72 carriers (3.69%/year) or noncarriers (2.64%/year). A significant relationship between diffusion tensor imaging parameter values and increasing expected age of onset was found in the periventricular normal-appearing white-matter region. Specifically, GRN carriers had a tendency of a faster increase of mean and radial diffusivity values and C9orf72 carriers had a tendency of a faster decline of fractional anisotropy values as they reached closer to the expected age of dementia onset. These findings suggest that white-matter changes may represent early markers of familial frontotemporal dementia due to genetic causes. However, GRN and C9orf72 mutation carriers may have different mechanisms leading to tissue abnormalities.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA