Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Pharmaceuticals (Basel) ; 17(2)2024 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-38399470

RESUMO

Targeted radionuclide therapy (TRT) is an emerging field and has the potential to become a major pillar in effective cancer treatment. Several pharmaceuticals are already in routine use for treating cancer, and there is still a high potential for new compounds for this application. But, a major issue for many radiolabeled low-to-moderate-molecular-weight molecules is their clearance via the kidneys and their subsequent reuptake. High renal accumulation of radioactive compounds may lead to nephrotoxicity, and therefore, the kidneys are often the dose-limiting organs in TRT with these radioligands. Over the years, different strategies have been developed aiming for reduced kidney retention and enhanced therapeutic efficacy of radioligands. In this review, we will give an overview of the efforts and achievements of the used strategies, with focus on the therapeutic potential of low-to-moderate-molecular-weight molecules. Among the strategies discussed here is coadministration of compounds that compete for binding to the endocytic receptors in the proximal tubuli. In addition, the influence of altering the molecular design of radiolabeled ligands on pharmacokinetics is discussed, which includes changes in their physicochemical properties and implementation of cleavable linkers or albumin-binding moieties. Furthermore, we discuss the influence of chelator and radionuclide choice on reabsorption of radioligands by the kidneys.

2.
EJNMMI Res ; 14(1): 17, 2024 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-38340184

RESUMO

BACKGROUND: Endometriosis is characterized by the ectopic occurrence of endometrial tissue. Though considered benign, endometriotic lesions possess tumor-like properties such as tissue invasion and remodeling of the extracellular matrix. One major clinical hurdle concerning endometriosis is its diagnosis. The diagnostic modalities ultrasound and MRI are often unable to detect all lesions, and a clear correlation between imaging and clinical symptoms is still controversial. Therefore, it was our aim to identify a potential target to image active endometriotic lesions. RESULTS: For our studies, we employed the preclinical radiotracer [111In]In-FnBPA5, which specifically binds to relaxed fibronectin-an extracellular matrix protein with key functions in homeostasis that has been implicated in the pathogenesis of diseases such as cancer and fibrosis. We employed this tracer in biodistribution as well as SPECT/CT studies in mice and conducted immunohistochemical stainings on mouse uterine tissue as well as on patient-derived endometriosis tissue. In biodistribution and SPECT/CT studies using the radiotracer [111In]In-FnBPA5, we found that radiotracer uptake in the myometrium varies with the estrous cycle of the mouse, leading to higher uptake of [111In]In-FnBPA5 during estrogen-dependent phases, which indicates an increased abundance of relaxed fibronectin when estrogen levels are high. Finally, immunohistochemical analysis of patient samples demonstrated that there is preferential relaxation of fibronectin in the proximity of the endometriotic stroma. CONCLUSION: Estrous cycle stages characterized by high estrogen levels result in a higher abundance of relaxed fibronectin in the murine myometrium. This finding together with a first proof-of-concept study employing human endometriosis tissues suggests that relaxed fibronectin could be a potential target for the development of a diagnostic radiotracer targeting endometriotic lesions. With [111In]In-FnBPA5, the matching targeting molecule is in preclinical development.

3.
EJNMMI Res ; 14(1): 37, 2024 Apr 06.
Artigo em Inglês | MEDLINE | ID: mdl-38581480

RESUMO

BACKGROUND: A new generation of radiolabeled minigastrin analogs delivers low radiation doses to kidneys and are considered relatively stable due to less enzymatic degradation. Nevertheless, relatively low tumor radiation doses in patients indicate limited stability in humans. We aimed at evaluating the effect of sacubitril, an inhibitor of the neutral endopeptidase 1, on the stability and absorbed doses to tumors and organs by the cholecystokinin-2 receptor agonist [177Lu]Lu-PP-F11N in patients. In this prospective phase 0 study eight consecutive patients with advanced medullary thyroid carcinoma and a current somatostatin receptor subtype 2 PET/CT scan were included. Patients received two short infusions of ~ 1 GBq [177Lu]Lu-PP-F11N in an interval of ~ 4 weeks with and without Entresto® pretreatment in an open-label, randomized cross-over order. Entresto® was given at a single oral dose, containing 48.6 mg sacubitril. Adverse events were graded and quantitative SPECT/CT and blood sampling were performed. Absorbed doses to tumors and relevant organs were calculated. RESULTS: Pretreatment with Entresto® showed no additional toxicity and increased the stability of [177Lu]Lu-PP-FF11N in blood significantly (p < 0.001). Median tumor-absorbed doses were 2.6-fold higher after Entresto® pretreatment (0.74 vs. 0.28 Gy/GBq, P = 0.03). At the same time, an increase of absorbed doses to stomach, kidneys and bone marrow was observed, resulting in a tumor-to-organ absorbed dose ratio not significantly different with and without Entresto®. CONCLUSIONS: Premedication with Entresto® results in a relevant stabilization of [177Lu]Lu-PP-FF11N and consecutively increases radiation doses in tumors and organs. Trial registration clinicaltrails.gov, NCT03647657. Registered 20 August 2018.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA